Basics of Derivative Pricing

George Pennacchi

University of Illinois
Introduction

- Derivative securities have cashflows that derive from another “underlying” variable, such as an asset price, interest rate, or exchange rate.
- The absence of arbitrage opportunities places restrictions on the derivative’s value relative to that of its underlying asset.
- For forward contracts, no-arbitrage considerations alone may lead to an exact pricing formula.
- For options, no-arbitrage restrictions cannot determine an exact price, but only bounds on the option’s price.
- An exact option pricing formula requires additional assumptions on the probability distribution of the underlying asset’s returns (e.g., binomial).
Forward Contracts on Assets Paying Dividends

- Let $F_{0\tau}$ be the date 0 forward price for exchanging one share of an underlying asset τ periods in the future. This price is agreed to at date 0 but paid at date $\tau > 0$ for delivery at date τ of the asset.

- Hence, the date $\tau > 0$ payoff to the long (short) party in this forward contract is $S_\tau - F_{0\tau}$, $(F_{0\tau} - S_\tau)$ where S_τ is the date τ spot price of one share of the underlying asset.

- The parties set $F_{0\tau}$ to make the date 0 contract’s value equal 0 (no payment at date 0).

- Let $R_f > 1$ be the per-period risk-free return for borrowing or lending over the period from date 0 to date τ, and let D be the date 0 present value of dividends paid by the underlying asset over the period from date 0 to date τ.

Consider a long forward contract and the trades that would exactly replicate its date τ payoffs:

<table>
<thead>
<tr>
<th>Date 0 Trade</th>
<th>Date 0 Cashflow</th>
<th>Date τ Cashflow</th>
</tr>
</thead>
<tbody>
<tr>
<td>Long Forward Contract</td>
<td>0</td>
<td>$S_\tau - F_{0\tau}$</td>
</tr>
</tbody>
</table>

Replicating Trades
1) Buy Asset and Sell Dividends
 $-S_0 + D$
 S_τ
2) Borrow
 $R_f^{-\tau} F_{0\tau}$
 $-F_{0\tau}$

Net Cashflow
 $-S_0 + D + R_f^{-\tau} F_{0\tau}$
 $S_\tau - F_{0\tau}$

In the absence of arbitrage, the cost of the replicating trades equals the zero cost of the long position:

$$S_0 - D - R_f^{-\tau} F_{0\tau} = 0 \quad (1)$$

or

$$F_{0\tau} = (S_0 - D) R_f^{\tau} \quad (2)$$
Forward Contract Replication

- If the contract had been initiated at a previous date, say date -1, at the forward price $F_{-1} = X$, then the date 0 value (replacement cost) of the long party’s payoff, say f_0, would still be the cost of replicating the two cashflows:

$$f_0 = S_0 - D - R_f^{-\tau} X$$ \hspace{1cm} (3)

- The forward price in equation (2) did not require an assumption regarding the random distribution of the underlying asset price, S_τ, because it was a static replication strategy.

- Replicating option payoffs will entail, in general, a dynamic replication strategy requiring distributional assumptions.
Basic Characteristics of Option Prices

- The owner of a call option has the right to buy an asset in the future at a pre-agreed price, called the exercise or strike price.
- Since the option owner’s payoff is always non-negative, this buyer must make an initial payment to the seller.
- A European option can be exercised only at the maturity of the option contract.
- Let S_0 and S_τ be the current and maturity date prices per share of the underlying asset, X be the exercise price, and c_t and p_t be the date t prices of European call and put options, respectively.
- Then the maturity values of European call and put options are
 \[c_\tau = \max[S_\tau - X, 0] \]
 \[p_\tau = \max[X - S_\tau, 0] \]
Recall that the long (short) party's payoff of a forward contract is $S_\tau - F_{0\tau} \ (F_{0\tau} - S_\tau)$.

If $F_{0\tau}$ is like an option's strike, X, then assuming $X = F_{0\tau}$ implies the payoff of a call (put) option weakly dominates that of a long (short) forward.

Because equation (3) is the current value of a long forward position contract, the European call's value must satisfy

$$c_0 \geq S_0 - D - R_f^{-\tau} X$$ \hspace{1cm} (6)

Furthermore, combining $c_0 \geq 0$ with (6) implies

$$c_0 \geq \max \left[S_0 - D - R_f^{-\tau} X, 0 \right]$$ \hspace{1cm} (7)

By a similar argument,

$$p_0 \geq \max \left[R_f^{-\tau} X + D - S_0, 0 \right]$$ \hspace{1cm} (8)
Put-Call Parity

- **Put-call parity** links options written on the same underlying, with the same maturity date, and exercise price.

\[
c_0 + R_f^{-\tau} X + D = p_0 + S_0
\]

(9)

- Consider forming the following two portfolios at date 0:
 1. Portfolio A = a put option having value \(p_0 \) and a share of the underlying asset having value \(S_0 \)
 2. Portfolio B = a call option having value \(c_0 \) and a bond with initial value of \(R_f^{-\tau} X + D \)

Then at date \(\tau \), these two portfolios are worth:

- Portfolio A =
 \[
 \max \left[X - S_\tau, 0 \right] + S_\tau + DR_f^\tau = \max \left[X, S_\tau \right] + DR_f^\tau
 \]

- Portfolio B = \(\max \left[0, S_\tau - X \right] + \]
 \[
 X + DR_f^\tau = \max \left[X, S_\tau \right] + DR_f^\tau
 \]
American Options

- An American option is at least as valuable as its corresponding European option because of its early exercise right.
- Hence if \(C_0 \) and \(P_0 \), the current values of American options, then \(C_0 \geq c_0 \) and \(P_0 \geq p_0 \).
- Some American options’ early exercise feature has no value.
- Consider a European call option on a non-dividend-paying asset with \(c_0 \geq S_0 - R^{-\tau}X \).
- An American call option on the same asset exercised early is worth \(C_0 = S_0 - X < S_0 - R^{-\tau}X < c_0 \), a contradiction.
- For an American put option, selling the asset immediately and receiving \($X \) now may be better than receiving \($X \) at date \(\tau \) (which has a present value of \(R^{-\tau}X \)). At exercise \(P_0 = X - S_0 \) may exceed \(R^{-\tau}X + D - S_0 \) if remaining dividends are small.
Binomial Option Pricing

- The no-arbitrage assumption alone cannot determine an exact option price as a function of the underlying asset.

- However, particular distributional assumptions for the underlying asset can allow the option’s payoff to be replicated by trading in the underlying asset and a risk-free asset.

- Cox, Ross, and Rubinstein (1979) binomial model can be used to value a European option on a non-dividend stock.

- It assumes that the current stock price, S, either moves up, by a proportion u, or down, by a proportion d, each period. The probability of an up move is π.
Binomial Option Pricing cont’d

\[\begin{align*}
S & \quad \text{with probability } \pi \\
S & \quad \text{with probability } 1 - \pi
\end{align*} \]
(10)

- Let \(R_f \) be one plus the risk-free rate for the period, where in the absence of arbitrage \(d < R_f < u \).
- Let \(c \) equal the value of a European call option written on the stock and having a strike price of \(X \), so that at maturity, \(c = \max[0, S_T - X] \).
- Thus, *one period prior to maturity*:
Binomial Option Pricing cont’d

\[c_u \equiv \max [0, uS - X] \quad \text{with probability } \pi \]

\[c_d \equiv \max [0, dS - X] \quad \text{with probability } 1 - \pi \] \hspace{1cm} (11)

- To value \(c \), consider a portfolio containing \(\Delta \) shares of stock and \$B\) of bonds so that its current value is \(\Delta S + B \).
- This portfolio’s value evolves over the period as

\[\Delta uS + R_f B \quad \text{with probability } \pi \]

\[\Delta S + B \]

\[\Delta dS + R_f B \quad \text{with probability } 1 - \pi \] \hspace{1cm} (12)
Binomial Option Pricing cont’d

- With two securities (bond and stock) and two states (up or down), Δ and B can be chosen to replicate the option’s payoffs:

$$\Delta uS + R_f B = c_u \quad (13)$$
$$\Delta dS + R_f B = c_d \quad (14)$$

- Solving for Δ and B that satisfy these two equations:

$$\Delta^* = \frac{c_u - c_d}{(u - d) S} \quad (15)$$
$$B^* = \frac{uc_d - dc_u}{(u - d) R_f} \quad (16)$$

- Hence, a portfolio of Δ^* shares of stock and B^* of bonds produces the same cashflow as the call option.
Binomial Option Pricing Example

• Therefore, the absence of arbitrage implies

\[c = \Delta^* S + B^* \] \hspace{1cm} (17)

where \(\Delta^* \) is the option’s *hedge ratio* and \(B^* \) is the debt financing that are positive/negative (*negative/positive*) for calls (*puts*).

• *Example*: If \(S = $50, u = 2, d = .5, R_f = 1.25, \) and \(X = $50 \), then \(uS = $100, dS = $25, c_u = $50, c_d = $0. \)

• Therefore,

\[\Delta^* = \frac{50 - 0}{(2 - .5) 50} = \frac{2}{3} \]
Binomial Option Pricing cont’d

\[B^* = \frac{0 - 25}{(2 - .5) 1.25} = -\frac{40}{3} \]

so that

\[c = \Delta^* S + B^* = \frac{2}{3} (50) - \frac{40}{3} = \frac{60}{3} = 20 \]

- This option pricing formula can be rewritten:

\[
c = \Delta^* S + B^* = \frac{c_u - c_d}{u - d} + \frac{uc_d - dc_u}{(u - d) R_f} \tag{18}
\]

\[
= \left[\frac{R_f - d}{u - d} \max [0, uS - X] + \frac{u - R_f}{u - d} \max [0, dS - X] \right] R_f
\]

which *does not* depend on the stock’s up/down probability, \(\pi \).
Binomial Option Pricing cont’d

- Since the stock’s expected rate of return equals $u\pi + d(1 - \pi) - 1$, it need not be known or estimated to solve for the no-arbitrage value of the option, c.
- However, we do need to know u and d, the size of the stock’s movements per period which determine its volatility.
- Note also that we can rewrite c as

$$c = \frac{1}{R_f} [\hat{\pi} c_u + (1 - \hat{\pi}) c_d]$$

(19)

where $\hat{\pi} \equiv \frac{R_f - d}{u - d}$ is the risk-neutral probability of the up state.

- $\hat{\pi} = \pi$ if individuals are risk-neutral since

$$[u\pi + d (1 - \pi)] S = R_f S$$

(20)

which implies that
Binomial Option Pricing cont’d

\[\pi = \frac{R_f - d}{u - d} = \hat{\pi} \] \hspace{1cm} (21)

so that \(\hat{\pi} \) does equal \(\pi \) under risk neutrality.

Thus, (19) can be expressed as

\[c_t = \frac{1}{R_f} \hat{E} [c_{t+1}] \] \hspace{1cm} (22)

where \(\hat{E} [\cdot] \) denotes the expectation operator evaluated using the risk-neutral probabilities \(\hat{\pi} \) rather than the true, or physical, probabilities \(\pi \).
Next, consider the option’s value with *two periods prior to maturity*. The stock price process is

\[
\begin{align*}
 &u^2 S \\
 &uS \\
 &S \\
 &dS \\
 &duS \\
 &d^2 S \\
\end{align*}
\]

so that the option price process is
Multiperiod Binomial Option Pricing cont’d

\[c_{uu} \equiv \max[0, u^2 S - X] \]

\[c_{du} \equiv \max[0, duS - X] \quad (24) \]

\[c_{dd} \equiv \max[0, d^2 S - X] \]

- We know how to solve one-period problems:

\[c_u = \frac{\hat{\pi} c_{uu} + (1 - \hat{\pi}) c_{du}}{R_f} \quad (25) \]

\[c_d = \frac{\hat{\pi} c_{du} + (1 - \hat{\pi}) c_{dd}}{R_f} \quad (26) \]
With two periods to maturity, the next period cashflows of c_u and c_d are replicated by a portfolio of $\Delta^* = \frac{c_u - c_d}{(u-d)S}$ shares of stock and $B^* = \frac{uc_d - dc_u}{(u-d)R_f}$ of bonds. No arbitrage implies

$$c = \Delta^* S + B^* = \frac{1}{R_f} [\hat{\pi}c_u + (1 - \hat{\pi})c_d] \quad (27)$$

which, as before says that $c_t = \frac{1}{R_f} \hat{E}[c_{t+1}]$.

The market is complete over both the last period and second-to-last periods. Substituting in for c_u and c_d, we have

$$c = \frac{1}{R_f^2} \left[\hat{\pi}^2 c_{uu} + 2\hat{\pi}(1 - \hat{\pi})c_{ud} + (1 - \hat{\pi})^2 c_{dd} \right]$$
Multiperiod Binomial Option Pricing cont’d

\[
\frac{1}{R_f^2} \left[\hat{\pi}^2 \max [0, u^2 S - X] + 2\hat{\pi} (1 - \hat{\pi}) \max [0, duS - X] \right]
\]

\[
+ \frac{1}{R_f^2} \left[(1 - \hat{\pi})^2 \max [0, d^2 S - X] \right]
\]

which says \(c_t = \frac{1}{R_f^2} \hat{E} [c_{t+2}] \). Note when a market is complete each period, it becomes \textit{dynamically complete}. By appropriate trading in just two assets, payoffs in three states of nature can be replicated.

- Repeating this analysis for any period prior to maturity, we always obtain

\[
c = \Delta^* S + B^* = \frac{1}{R_f} \left[\hat{\pi} c_u + (1 - \hat{\pi}) c_d \right]
\] \hspace{1cm} (28)
Repeated substitution for \(c_u, c_d, c_{uu}, c_{ud}, c_{dd}, c_{uuu} \), and so on, we obtain the formula, with \(n \) periods prior to maturity:

\[
c = \frac{1}{R_f^n} \left[\sum_{j=0}^{n} \left(\frac{n!}{j! (n-j)!} \right) \hat{\pi}^j (1 - \hat{\pi})^{n-j} \max [0, u^j d^{n-j} S - X] \right]
\]

or \(c_t = \frac{1}{R_f^n} \hat{E} [c_{t+n}] \). Define “\(a \)” as the minimum number of upward jumps of \(S \) for it to exceed \(X \).

Then for all \(j < a \) (out of the money):

\[
\max [0, u^j d^{n-j} S - X] = 0 \quad (30)
\]

while for all \(j > a \) (in the money):

\[
\max [0, u^j d^{n-j} S - X] = u^j d^{n-j} S - X \quad (31)
\]
Thus, the formula for c can be simplified:

$$c = \frac{1}{R_f^n} \left[\sum_{j=a}^{n} \left(\frac{n!}{j! (n-j)!} \right) \hat{\pi}^j (1 - \hat{\pi})^{n-j} \left[u^j d^{n-j} S - X \right] \right]$$

(32)

Breaking up (32) into two terms, we have

$$c = S \left[\sum_{j=a}^{n} \left(\frac{n!}{j! (n-j)!} \right) \hat{\pi}^j (1 - \hat{\pi})^{n-j} \left[\frac{u^j d^{n-j}}{R_f^n} \right] \right]$$

$$- X R_f^{-n} \left[\sum_{j=a}^{n} \left(\frac{n!}{j! (n-j)!} \right) \hat{\pi}^j (1 - \hat{\pi})^{n-j} \right]$$

(33)

The terms in brackets are complementary binomial distribution functions, so that (33) can be written
Multiperiod Binomial Option Pricing cont’d

\[c = S \phi[a; n, \hat{\pi}'] - XR_{f}^{-n} \phi[a; n, \hat{\pi}] \]

(34)

where \(\hat{\pi}' \equiv \left(\frac{u}{R_f} \right) \hat{\pi} \) and \(\phi[a; n, \hat{\pi}] \) is the probability that the sum of \(n \) random variables that equal 1 with probability \(\hat{\pi} \) and 0 with probability \(1 - \hat{\pi} \) is \(\geq a \).

For time to maturity \(\tau \) and per-unit variance \(\sigma^2 \) (depending on \(u \) and \(d \)), as the number of periods \(n \to \infty \), but the length of each period \(\frac{\tau}{n} \to 0 \), this formula converges to:

\[c = SN(z) - XR_{f}^{-\tau} N(z - \sigma \sqrt{\tau}) \]

(35)

where \(z \equiv \left[\ln \left(\frac{S}{XR_{f}^{-\tau}} \right) + \frac{1}{2} \sigma^2 \tau \right] / (\sigma \sqrt{\tau}) \) and \(N(\cdot) \) is the cumulative standard normal distribution function.
Summary

- Forward contract payoffs can be replicated using a static trading strategy.
- Option contract payoffs require a dynamic trading strategy.
- A dynamically complete market allows us to use risk-neutral valuation.
- Dynamically complete markets imply replication of payoffs in all future states, but we may need to execute many trades to do so.