Basics of Derivative Pricing

George Pennacchi

University of Illinois
Introduction

- Derivative securities have cashflows that derive from another “underlying” variable, such as an asset price, interest rate, or exchange rate.

- The absence of arbitrage opportunities places restrictions on the derivative’s value relative to that of its underlying asset.

- For forward contracts, no-arbitrage considerations alone may lead to an exact pricing formula.

- For options, no-arbitrage restrictions cannot determine an exact price, but only bounds on the option’s price.

- An exact option pricing formula requires additional assumptions on the probability distribution of the underlying asset’s returns (e.g., binomial).
Forward Contracts on Assets Paying Dividends

- Let $F_{0\tau}$ be the date 0 forward price for exchanging one share of an underlying asset τ periods in the future. This price is agreed to at date 0 but paid at date $\tau > 0$ for delivery at date τ of the asset.

- Hence, the date $\tau > 0$ payoff to the long (short) party in this forward contract is $S_\tau - F_{0\tau}$, ($F_{0\tau} - S_\tau$) where S_τ is the date τ spot price of one share of the underlying asset.

- The parties set $F_{0\tau}$ to make the date 0 contract’s value equal 0 (no payment at date 0).

- Let $R_f > 1$ be the per-period risk-free return for borrowing or lending over the period from date 0 to date τ, and let D be the date 0 present value of dividends paid by the underlying asset over the period from date 0 to date τ.

Forward Contract Cash Flows

Consider a long forward contract and the trades that would exactly replicate its date τ payoffs:

<table>
<thead>
<tr>
<th>Date 0 Trade</th>
<th>Date 0 Cashflow</th>
<th>Date τ Cashflow</th>
</tr>
</thead>
<tbody>
<tr>
<td>Long Forward Contract</td>
<td>0</td>
<td>$S_\tau - F_{0\tau}$</td>
</tr>
</tbody>
</table>

Replicating Trades

1. **Buy Asset and Sell Dividends**

 $-S_0 + D$

 S_τ

2. **Borrow**

 $R_f^{-\tau} F_{0\tau}$

 $-F_{0\tau}$

Net Cashflow

$-S_0 + D + R_f^{-\tau} F_{0\tau}$

$S_\tau - F_{0\tau}$

In the absence of arbitrage, the cost of the replicating trades equals the zero cost of the long position:

$$S_0 - D - R_f^{-\tau} F_{0\tau} = 0 \quad (1)$$

or

$$F_{0\tau} = (S_0 - D) R_f^\tau \quad (2)$$
Forward Contract Replication

- If the contract had been initiated at a previous date, say date \(-1\), at the forward price \(F_{-1} = X\), then the date 0 value (replacement cost) of the long party’s payoff, say \(f_0\), would still be the cost of replicating the two cashflows:

\[
f_0 = S_0 - D - R_f^{-\tau} X \tag{3}
\]

- The forward price in equation (2) did not require an assumption regarding the random distribution of the underlying asset price, \(S_\tau\), because it was a static replication strategy.

- Replicating option payoffs will entail, in general, a dynamic replication strategy requiring distributional assumptions.
Basic Characteristics of Option Prices

- The owner of a call option has the right to buy an asset in the future at a pre-agreed price, called the exercise or strike price.
- Since the option owner’s payoff is always non-negative, this buyer must make an initial payment to the seller.
- A European option can be exercised only at the maturity of the option contract.
- Let S_0 and S_τ be the current and maturity date prices per share of the underlying asset, X be the exercise price, and c_t and p_t be the date t prices of European call and put options, respectively.
- Then the maturity values of European call and put options are

$$c_\tau = \max [S_\tau - X, 0] \quad (4)$$

$$p_\tau = \max [X - S_\tau, 0] \quad (5)$$
Lower Bounds on European Option Values

- Recall that the long (short) party’s payoff of a forward contract is $S_T - F_{0T} (F_{0T} - S_T)$.
- If F_{0T} is like an option’s strike, X, then assuming $X = F_{0T}$ implies the payoff of a call (put) option weakly dominates that of a long (short) forward.
- Because equation (3) is the current value of a long forward position contract, the European call’s value must satisfy

$$c_0 \geq f_0 = S_0 - D - R_f^{-\tau} X$$

(6)

Furthermore, combining $c_0 \geq 0$ with (6) implies

$$c_0 \geq \max [S_0 - D - R_f^{-\tau} X, 0]$$

(7)

- By a similar argument,

$$p_0 \geq \max [-f_0, 0] = \max [R_f^{-\tau} X + D - S_0, 0]$$

(8)
Put-Call Parity

Put-call parity links options written on the same underlying, with the same maturity date, and exercise price.

\[c_0 + R_f^{-\tau} X + D = p_0 + S_0 \] (9)

Consider forming the following two portfolios at date 0:

1. Portfolio A = a put option having value \(p_0 \) and a share of the underlying asset having value \(S_0 \)
2. Portfolio B = a call option having value \(c_0 \) and a bond with initial value of \(R_f^{-\tau} X + D \)

Then at date \(\tau \), these two portfolios are worth:

- Portfolio A =
 \[\max [X - S_\tau, 0] + S_\tau + DR_f^\tau = \max [X, S_\tau] + DR_f^\tau \]
- Portfolio B = \(\max [0, S_\tau - X] + X + DR_f^\tau = \max [X, S_\tau] + DR_f^\tau \)
American Options

- An American option is at least as valuable as its corresponding European option because of its early exercise right.
- Hence if C_0 and P_0, the current values of American options, then $C_0 \geq c_0$ and $P_0 \geq p_0$.
- Some American options’ early exercise feature has no value.
- Consider a European call option on a non-dividend-paying asset, and recall that $c_0 \geq S_0 - R^{-\tau} X$.
- An American call option on the same asset exercised early is worth $C_0 = S_0 - X < S_0 - R^{-\tau} X < c_0$, a contradiction.
- For an American put option, selling the asset immediately and receiving X now may be better than receiving X at date τ (which has a present value of $R^{-\tau} X$). At exercise $P_0 = X - S_0$ may exceed $R^{-\tau} X + D - S_0$ if remaining dividends are small.
The no-arbitrage assumption alone cannot determine an exact option price as a function of the underlying asset.

However, particular distributional assumptions for the underlying asset can allow the option’s payoff to be replicated by trading in the underlying asset and a risk-free asset.

Cox, Ross, and Rubinstein (1979) developed a binomial model to value a European option on a non-dividend-paying stock.

The model assumes that the current stock price, S, either moves up by a proportion u, or down by a proportion d, each period. The probability of an up move is π.
Binomial Option Pricing cont’d

\[uS \quad \text{with probability } \pi \]

\[dS \quad \text{with probability } 1 - \pi \] \hspace{1cm} (10)

- Let \(R_f \) be one plus the risk-free rate for the period, where in the absence of arbitrage \(d < R_f < u \).
- Let \(c \) equal the current value of a European call option written on the stock and having a strike price of \(X \), so that its payoff at maturity \(\tau \) equals \(\max[0, S_\tau - X] \).
- Thus, \textit{one period prior to maturity}:
Binomial Option Pricing cont’d

\[c_u \equiv \max [0, uS - X] \text{ with probability } \pi \]

\[c_d \equiv \max [0, dS - X] \text{ with probability } 1 - \pi \quad (11) \]

- To value \(c \), consider a portfolio containing \(\Delta \) shares of stock and \(\$B \) of bonds so that its current value is \(\Delta S + B \).
- This portfolio’s value evolves over the period as

\[\Delta uS + R_f B \text{ with probability } \pi \]

\[\Delta S + B \quad \Delta dS + R_f B \text{ with probability } 1 - \pi \quad (12) \]
Binomial Option Pricing cont’d

- With two securities (bond and stock) and two states (up or down), Δ and B can be chosen to replicate the option’s payoffs:

 \[
 \Delta uS + R_f B = c_u \\
 \Delta dS + R_f B = c_d
 \]
 \[(13) \]

 \[(14) \]

- Solving for Δ and B that satisfy these two equations:

 \[
 \Delta^* = \frac{c_u - c_d}{(u - d) S} \\
 B^* = \frac{uc_d - dc_u}{(u - d) R_f}
 \]
 \[(15) \]

 \[(16) \]

- Hence, a portfolio of Δ^* shares of stock and B^* of bonds produces the same cashflow as the call option.
Therefore, the absence of arbitrage implies

\[c = \Delta^* S + B^* \] \hspace{1cm} (17)

where \(\Delta^* \) is the option’s *hedge ratio* and \(B^* \) is the debt financing that are positive/negative (*negative/positive*) for calls (*puts*).

Example: If \(S = $50, \ u = 2, \ d = .5, \ R_f = 1.25, \) and \(X = $50, \) then \(uS = $100, \ dS = $25, \ c_u = $50, \ c_d = $0. \)

Therefore,

\[\Delta^* = \frac{50 - 0}{(2 - .5) 50} = \frac{2}{3} \]
Binomial Option Pricing cont’d

\[B^* = \frac{0 - 25}{(2 - 0.5) \times 1.25} = -\frac{40}{3} \]

so that

\[c = \Delta^* S + B^* = \frac{2}{3} (50) - \frac{40}{3} = \frac{60}{3} = \$20 \]

- This option pricing formula can be rewritten:

\[c = \Delta^* S + B^* = \frac{c_u - c_d}{u - d} + \frac{uc_d - dc_u}{(u - d) R_f} \tag{18} \]

\[= \frac{\left[\frac{R_f - d}{u - d} \max [0, uS - X] + \frac{u - R_f}{u - d} \max [0, dS - X] \right]}{R_f} \]

which does not depend on the stock’s up/down probability, \(\pi \).
Since the stock’s expected rate of return equals \(u\pi + d(1 - \pi) - 1 \), it need not be known or estimated to solve for the no-arbitrage value of the option, \(c \).

However, we do need to know \(u \) and \(d \), the size of the stock’s movements per period which determine its volatility.

Note also that we can rewrite \(c \) as
\[
c = \frac{1}{R_f} \left[\hat{\pi} c_u + (1 - \hat{\pi}) c_d \right]
\]
(19)

where \(\hat{\pi} \equiv \frac{R_f - d}{u - d} \) is the risk-neutral probability of the up state.

\(\hat{\pi} = \pi \) if individuals are risk-neutral since
\[
[u\pi + d(1 - \pi)] S = R_f S
\]
(20)

which implies that
Binomial Option Pricing cont’d

\[
\pi = \frac{R_f - d}{u - d} = \hat{\pi}
\] \hspace{1cm} (21)

so that \(\hat{\pi}\) does equal \(\pi\) under risk neutrality.

Thus, (19) can be expressed as

\[
c_t = \frac{1}{R_f} \hat{E} [c_{t+1}]
\] \hspace{1cm} (22)

where \(\hat{E} [\cdot]\) denotes the expectation operator evaluated using the risk-neutral probabilities \(\hat{\pi}\) rather than the true, or physical, probabilities \(\pi\).
Next, consider the option’s value with two periods prior to maturity. The stock price process is

\[S \xrightarrow{u} uS \xrightarrow{d} duS \xrightarrow{d} d^2S \]
\[S \xleftarrow{u} u^2S \xleftarrow{d} dS \xleftarrow{d} d^2S \]

so that the option price process is
Multiperiod Binomial Option Pricing cont’d

\[c_{uu} \equiv \max \left[0, u^2 S - X \right] \]

\[c_{du} \equiv \max \left[0, duS - X \right] \quad (24) \]

\[c_{dd} \equiv \max \left[0, d^2 S - X \right] \]

We know how to solve one-period problems:

\[c_u = \frac{\hat{\pi} c_{uu} + (1 - \hat{\pi}) c_{du}}{R_f} \quad (25) \]

\[c_d = \frac{\hat{\pi} c_{du} + (1 - \hat{\pi}) c_{dd}}{R_f} \quad (26) \]
Multiperiod Binomial Option Pricing cont’d

- With two periods to maturity, the next period cashflows of c_u and c_d are replicated by a portfolio of $\Delta^* = \frac{c_u - c_d}{(u-d)S}$ shares of stock and $B^* = \frac{uc_d - dc_u}{(u-d)R_f}$ of bonds. No arbitrage implies

$$c = \Delta^* S + B^* = \frac{1}{R_f} [\hat{\pi} c_u + (1 - \hat{\pi}) c_d] \quad (27)$$

which, as before says that $c_t = \frac{1}{R_f} \hat{E} [c_{t+1}]$.

- The market is complete over both the last period and second-to-last periods. Substituting in for c_u and c_d, we have

$$c = \frac{1}{R_f^2} \left[\hat{\pi}^2 c_{uu} + 2\hat{\pi} (1 - \hat{\pi}) c_{ud} + (1 - \hat{\pi})^2 c_{dd} \right]$$
Multiperiod Binomial Option Pricing cont’d

\[c_t = \frac{1}{R_f^2} E[c_{t+2}] \]

which says \(c_t = \frac{1}{R_f^2} E[c_{t+2}] \). Note when a market is complete each period, it becomes *dynamically complete*. By appropriate trading in just two assets, payoffs in three states of nature can be replicated.

- Repeating this analysis for any period prior to maturity, we always obtain

\[c = \Delta^* S + B^* = \frac{1}{R_f} [\hat{\pi} c_u + (1 - \hat{\pi}) c_d] \quad (28) \]
Repeated substitution for \(c_u, c_d, c_{uu}, c_{ud}, c_{dd}, c_{uuu} \), and so on, we obtain the formula, with \(n \) periods prior to maturity:

\[
\begin{align*}
 c &= \frac{1}{R^n_f} \left[\sum_{j=0}^{n} \left(\frac{n!}{j! (n-j)!} \right) \pi^j (1 - \pi)^{n-j} \max[0, u^j d^{n-j} S - X] \right] \\
 \text{(29)}
\end{align*}
\]

or \(c_t = \frac{1}{R^n_f} \hat{E}[c_{t+n}] \). Define “\(a \)” as the minimum number of upward jumps of \(S \) for it to exceed \(X \).

Then for all \(j < a \) (out of the money):

\[
\max[0, u^j d^{n-j} S - X] = 0 \\
\text{(30)}
\]

while for all \(j > a \) (in the money):

\[
\max[0, u^j d^{n-j} S - X] = u^j d^{n-j} S - X \\
\text{(31)}
\]
Thus, the formula for c can be simplified:

$$c = \frac{1}{R_f^n} \left[\sum_{j=a}^{n} \left(\frac{n!}{j! (n-j)!} \right) \hat{\pi}^j (1 - \hat{\pi})^{n-j} \left[u^j d^{n-j} S - X \right] \right]$$

(32)

Breaking up (32) into two terms, we have

$$c = S \left[\sum_{j=a}^{n} \left(\frac{n!}{j! (n-j)!} \right) \hat{\pi}^j (1 - \hat{\pi})^{n-j} \left[\frac{u^j d^{n-j}}{R_f^n} \right] \right]$$

$$- X R_f^{-n} \left[\sum_{j=a}^{n} \left(\frac{n!}{j! (n-j)!} \right) \hat{\pi}^j (1 - \hat{\pi})^{n-j} \right]$$

(33)

The terms in brackets are complementary binomial distribution functions, so that (33) can be written...
Multiperiod Binomial Option Pricing cont’d

\[c = S \phi[a; n, \hat{\pi}'] - XR_f^{-n} \phi[a; n, \hat{\pi}] \] \hspace{1cm} (34)

where \(\hat{\pi}' = \left(\frac{u}{R_f} \right) \hat{\pi} \) and \(\phi[a; n, \hat{\pi}] \) is the probability that the sum of \(n \) random variables that equal 1 with probability \(\hat{\pi} \) and 0 with probability \(1 - \hat{\pi} \) is \(\geq a \).

For time to maturity \(\tau \) and per-unit variance \(\sigma^2 \) (depending on \(u \) and \(d \)), as the number of periods \(n \to \infty \), but the length of each period \(\frac{\tau}{n} \to 0 \), this formula converges to:

\[c = SN(z) - XR_f^{-\tau} N \left(z - \sigma \sqrt{\tau} \right) \] \hspace{1cm} (35)

where \(z \equiv \left[\ln \left(\frac{S}{XR_f^{-\tau}} \right) + \frac{1}{2} \sigma^2 \tau \right] / (\sigma \sqrt{\tau}) \) and \(N(\cdot) \) is the cumulative standard normal distribution function.
Summary

- Forward contract payoffs can be replicated using a static trading strategy.

- Option contract payoffs require a dynamic trading strategy.

- A dynamically complete market allows us to use risk-neutral valuation.

- Dynamically complete markets imply replication of payoffs in all future states, but we may need to execute many trades to do so.