Continuous-Time Consumption and Portfolio Choice

George Pennacchi

University of Illinois
Assuming that asset prices follow diffusion processes, we derive an individual’s continuous consumption and portfolio choices.

Asset demands reflect single-period mean-variance terms as well as components that hedge against changes in investment opportunities.

Consumption and portfolio choices can be solved using stochastic dynamic programming or, when markets are complete, a martingale technique.
Model Assumptions

- Let \(x \) be a \(k \times 1 \) vector of state variables that affect the distribution of asset returns, where \(r(x, t) \) is the date \(t \) instantaneous-maturity risk-free rate and the date \(t \) price of the \(i^{th} \) risky asset, \(S_i(t) \), follows the process

\[
\frac{dS_i(t)}{S_i(t)} = \mu_i(x, t) \, dt + \sigma_i(x, t) \, dz_i \tag{1}
\]

where \(i = 1, \ldots, n \) and \((\sigma_i \, dz_i)(\sigma_j \, dz_j) = \sigma_{ij} \, dt\). The process (1) assumed the reinvestment of dividends.

- The \(i^{th} \) state variable follow the process

\[
dx_i = a_i(x, t) \, dt + b_i(x, t) \, d\zeta_i \tag{2}
\]

where \(i = 1, \ldots, k \). \(d\zeta_i \) is a Brownian motion with \((b_i \, d\zeta_i)(b_j \, d\zeta_j) = b_{ij} \, dt\) and \((\sigma_i \, dz_i)(b_j \, d\zeta_j) = \phi_{ij} \, dt\).

George Pennacchi
University of Illinois
Model Assumptions cont’d

- Define C_t as the individual’s date t rate of consumption per unit time.
- Also, let $\omega_{i,t}$ be the proportion of total wealth at date t, W_t, allocated to risky asset i, $i = 1, \ldots, n$, so that

$$dW = \left[\sum_{i=1}^{n} \omega_i dS_i/S_i + \left(1 - \sum_{i=1}^{n} \omega_i \right) r dt \right] W - C dt \tag{3}$$

$$= \sum_{i=1}^{n} \omega_i (\mu_i - r) W dt + (rW - C) dt + \sum_{i=1}^{n} \omega_i W \sigma_i dz_i$$

- Subject to (3), the individual solves:

$$\max_{C_s, \{\omega_{i,s}\}, \forall s, i} E_t \left[\int_t^T U(C_s, s) \, ds + B(W_T, T) \right] \tag{4}$$
Continuous-Time Dynamic Programming

Consider a simplified version of the problem in conditions (3) to (4) with only one choice and one state variable:

\[
\max_{\{c\}} E_t \left[\int_t^T U(c_s, x_s) \, ds \right] \tag{5}
\]

subject to

\[
dx = a(x, c) \, dt + b(x, c) \, dz \tag{6}
\]

where \(c_t\) is a control (e.g. consumption) and \(x_t\) is a state (e.g. wealth). Define the indirect utility function, \(J(x_t, t)\):

\[
J(x_t, t) = \max_{\{c\}} E_t \left[\int_t^T U(c_s, x_s) \, ds \right] \tag{7}
\]

\[
= \max_{\{c\}} E_t \left[\int_t^{t+\Delta t} U(c_s, x_s) \, ds + \int_{t+\Delta t}^T U(c_s, x_s) \, ds \right]
\]
Continuous-Time Dynamic Programming cont’d

- Apply Bellman’s *Principle of Optimality*:

\[
J(x_t, t) = \max_{\{c\}} E_t \left[\int_t^{t+\Delta t} U(c_s, x_s) \, ds + \max_{\{c\}} E_{t+\Delta t} \left[\int_{t+\Delta t}^T U(c_s, x_s) \, ds \right] \right] \\
= \max_{\{c\}} E_t \left[\int_t^{t+\Delta t} U(c_s, x_s) \, ds + J(x_{t+\Delta t}, t + \Delta t) \right] \tag{8}
\]

- For \(\Delta t \) small, approximate the first integral as \(U(c_t, x_t) \Delta t \) and expand \(J(x_{t+\Delta t}, t + \Delta t) \) around \(x_t \) and \(t \) in a Taylor series:

\[
J(x_t, t) = \max_{\{c\}} E_t \left[U(c_t, x_t) \Delta t + J(x_t, t) + J_x \Delta x + J_t \Delta t \right. \\
+ \frac{1}{2} J_{xx} (\Delta x)^2 + J_{xt} (\Delta x)(\Delta t) + \frac{1}{2} J_{tt} (\Delta t)^2 + o(\Delta t) \left. \right] \tag{9}
\]

where \(o(\Delta t) \) represents higher-order terms.
The state variable’s diffusion process (6) is approximated

\[\Delta x \approx a(x, c)\Delta t + b(x, c)\Delta z + o(\Delta t) \quad (10) \]

where \(\Delta z = \sqrt{\Delta t} \tilde{\varepsilon} \) and \(\tilde{\varepsilon} \sim N(0, 1) \). Substituting (10) into (9), and subtracting \(J(x_t, t) \) from both sides,

\[0 = \max_{\{c\}} E_t [U(c_t, x_t)\Delta t + \Delta J + o(\Delta t)] \quad (11) \]

where

\[\Delta J = \left[J_t + J_x a + \frac{1}{2} J_{xx} b^2 \right] \Delta t + J_x b \Delta z \quad (12) \]

This is just a discrete-time version of Itô’s lemma. In equation (11), \(E_t [J_x b \Delta z] = 0 \). Divide both sides of (11) by \(\Delta t \).
Continuous-Time Dynamic Programming cont’d

- We can take the limit as $\Delta t \to 0$:

$$0 = \max_{\{c\}} \left[U(c_t, x_t) + J_t + J_x a + \frac{1}{2} J_{xx} b^2 \right]$$ \hspace{1cm} (13)

- Equation (13) is the stochastic, continuous-time Bellman equation and can be rewritten as

$$0 = \max_{\{c\}} [U(c_t, x_t) + L[J]]$$ \hspace{1cm} (14)

where $L[\cdot]$ is the *Dynkin operator*; that is, the “drift” term (expected change per unit of time) in $dJ(x, t)$ obtained from applying Itô’s lemma to J.

George Pennacchi

University of Illinois

Continuous-Time Consumption and Portfolio Choice
Solving the *Real* Continuous-Time Problem

- Returning to the consumption - portfolio choice problem, define the indirect utility-of-wealth $J(W, x, t)$:

$$J(W, x, t) = \max_{C_s, \{\omega_{i,s}\}, \forall s, i} E_t \left[\int_t^T U(C_s, s) \, ds + B(W_T, T) \right]$$

(15)

- In this problem, consumption, C_t, and portfolio weights, $\{\omega_{i,t}\}, i = 1, \ldots, n$ are the control variables.

- Wealth, W_t, and the variables affecting the distribution of asset returns, $x_{i,t}, i = 1, \ldots, k$ are the state variables that evolve according to (1) and (2), respectively.
Solving the Continuous-Time Problem

Thus, the Dynkin operator in terms of W and x is

$$L [J] = \frac{\partial J}{\partial t} + \left[\sum_{i=1}^{n} \omega_i (\mu_i - r) W + (rW - C) \right] \frac{\partial J}{\partial W} + \sum_{i=1}^{k} a_i \frac{\partial J}{\partial x_i}$$

$$+ \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \sigma_{ij} \omega_i \omega_j W^2 \frac{\partial^2 J}{\partial W^2} + \frac{1}{2} \sum_{i=1}^{k} \sum_{j=1}^{k} b_{ij} \frac{\partial^2 J}{\partial x_i \partial x_j}$$

$$+ \sum_{j=1}^{k} \sum_{i=1}^{n} W \omega_i \phi_{ij} \frac{\partial^2 J}{\partial W \partial x_j}$$

(16)

From equation (14) we have

$$0 = \max_{C_t, \{\omega_{i,t}\}} [U(C_t, t) + L[J]]$$

(17)

We obtain first-order conditions wrt C_t and $\omega_{i,t}$:
Solving the Continuous-Time Problem cont’d

\[0 = \frac{\partial U(C^*, t)}{\partial C} - \frac{\partial J(W, x, t)}{\partial W} \]

\[0 = W \frac{\partial J}{\partial W} (\mu_i - r) + W^2 \frac{\partial^2 J}{\partial W^2} \sum_{j=1}^{n} \sigma_{ij}\omega_j^* + W \sum_{j=1}^{k} \phi_{ij} \frac{\partial^2 J}{\partial x_j \partial W}, \]

where \(i = 1, \ldots, n \).

- Equation (18) is the envelope condition while equation (19) has the discrete-time analog

\[E_t [R_{i,t} J_W(W_{t+1}, t + 1)] = R_{f,t} E_t [J_W(W_{t+1}, t + 1)], \quad i = 1, \ldots, n \]
Solving the Continuous-Time Problem cont’d

Define the inverse marginal utility function \(G = [\partial U / \partial C]^{-1} \) and let \(J_W \) be shorthand for \(\partial J / \partial W \). Condition (18) becomes

\[
C^* = G (J_W, t)
\]

(20)

Denote \(\Omega \equiv [\sigma_{ij}] \) as the \(n \times n \) instantaneous covariance matrix whose \(i, j^{th} \) element is \(\sigma_{ij} \), and denote \(\nu_{ij} \) as the \(i, j^{th} \) element of \(\Omega^{-1} \equiv [\nu_{ij}] \).

Then the solution to (19) can be written as

\[
\omega_i^* = -\frac{J_W}{J_{WW}W} \sum_{j=1}^n \nu_{ij} (\mu_j - r) - \sum_{m=1}^k \sum_{j=1}^n \frac{J_{Wx_m}W}{J_{WW}W} \phi_{im} \nu_{ij}, \quad i = 1, \ldots, n
\]

(21)

\(\omega_i^* \) in (21) depends on \(-J_W / (J_{WW}W) \) which is the inverse of relative risk aversion for lifetime utility of wealth.
Assuming specific functions for U and the μ_i's, σ_{ij}'s, and ϕ_{ij}'s, equations (20) and (21) can be solved in terms of the state variables W, x, and J_W, J_{WW}, and J_{Wx_i}.

Substituting C^* and the $\omega_{i,t}^*$ back into equation (17) leads to a nonlinear partial differential equation (PDE) for J that can be solved subject to $J(W_T, x_T, T) = B(W_T, T)$.

In turn, solutions for C_t^* and the $\omega_{i,t}^*$ in terms of only W_t, and x_t then result from (20) and (21).

If all of the μ_i's (including r) and σ_i's are constants, asset returns are lognormally distributed and there is a constant investment opportunity set.

In this case the only state variable is W, and the optimal portfolio weights in (21) simplify to
Constant Investment Opportunities

\[
\omega_i^* = -\frac{J_W}{J_{WW} W} \sum_{j=1}^{n} \nu_{ij} (\mu_j - r), \quad i = 1, \ldots, n
\] (22)

- Plugging (20) and (22) back into the optimality equation (17), and using the fact that \([\nu_{ij}] \equiv \Omega^{-1}\), we have

\[
0 = U(G, t) + J_t + \left[\sum_{i=1}^{n} \omega_i (\mu_i - r)W + rW - C \right] J_W + \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \sigma_{ij} \omega_i \omega_j W^2 J_{WW}
\]

\[
= U(G) + J_t + J_W (rW - G) - \frac{J_W^2}{J_{WW}} \sum_{i=1}^{n} \sum_{j=1}^{n} \nu_{ij} (\mu_i - r)(\mu_j - r)
\]

\[
+ \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \sigma_{ij} \omega_i \omega_j W^2 \frac{\partial^2 J}{\partial W^2}
\]

\[
= U(G) + J_t + J_W (rW - G) - \frac{J_W^2}{2J_{WW}} \sum_{i=1}^{n} \sum_{j=1}^{n} \nu_{ij} (\mu_i - r)(\mu_j - r)
\] (23)
This equation can be solved for J and, in turn, C^* and ω^*_i after specifying U.

In any case, since ν_{ij}, μ_j, and r are constants, the proportion of each risky asset that is optimally held will be proportional to $-J_W/(J_W W)$ which is common across all assets.

Consequently, the proportion of wealth in risky asset i to risky asset k is a constant:

$$
\frac{\omega^*_i}{\omega^*_k} = \frac{\sum_{j=1}^{n} \nu_{ij} (\mu_j - r)}{\sum_{j=1}^{n} \nu_{kj} (\mu_j - r)}
$$

(24)
Therefore, the proportion of risky asset \(k \) to all risky assets is

\[
\delta_k = \frac{\omega_k^*}{\sum_{i=1}^{n} \omega_i^*} = \frac{\sum_{j=1}^{n} \nu_{kj} (\mu_j - r)}{\sum_{j=1}^{n} \sum_{i=1}^{n} \nu_{ij} (\mu_j - r)}
\]

Since all individuals regardless of \(U \) will hold \(r \) and the constant-proportion portfolio of risky assets defined by \(\delta_k \), we obtain a two-fund separation result: all individuals’ optimal portfolios consists of the risk-free asset paying rate of return \(r \) and a single risky asset portfolio having the following expected rate of return, \(\mu \), and variance, \(\sigma^2 \):
Two-Fund Separation

\[\mu \equiv \sum_{i=1}^{n} \delta_i \mu_i \]

\[\sigma^2 \equiv \sum_{i=1}^{n} \sum_{j=1}^{n} \delta_i \delta_j \sigma_{ij} \] (26)

Indeed, recalling the single-period mean-variance portfolio weights, the \(i^{th} \) element of (2.42) can be written as
\[w_i^* = \lambda \sum_{j=1}^{n} \nu_{ij} (\bar{R}_j - R_f) \], which equals (22) when
\[\lambda = -J_W / (J_{WW} W) \].

Hence, we obtain mean-variance portfolio weights with lognormally-distributed asset returns since the asset return diffusions are \textit{locally} normal.
HARA Utility and Constant Investment Opportunities

- Analytic solutions to the constant investment opportunity problem exist with Hyperbolic Absolute Risk Aversion utility:

\[U(C, t) = e^{-\rho t} \frac{1 - \gamma}{\gamma} \left(\frac{\alpha C}{1 - \gamma} + \beta \right)^\gamma \]

(27)

- Optimal consumption in equation (20) is

\[C^* = \frac{1 - \gamma}{\alpha} \left(\frac{e^{\rho t} J_W}{\alpha} \right)^{\frac{1}{\gamma - 1}} - \frac{(1 - \gamma)\beta}{\alpha} \]

(28)

and using (22) and (26), the risky-asset portfolio weights are

\[\omega^* = -\frac{J_W}{J_{WW} W} \frac{\mu - r}{\sigma^2} \]

(29)
HARA Utility and Constant Investment Opportunities

- Simplify equation (23) to obtain

\[0 = \frac{(1 - \gamma)^2}{\gamma} e^{-\rho t} \left(\frac{e^{\rho t} J_W}{\alpha} \right)^{\frac{\gamma}{\gamma - 1}} + J_t + \left(\frac{(1 - \gamma) \beta}{\alpha} + rW \right) J_W - \frac{J_{WW}^2}{J_{WW}^2} \frac{(\mu - r)^2}{2\sigma^2} \]

- Merton (1971) solves this PDE subject to
\(J(W, T) = B(W_T, T) = 0 \), and shows (28) and (29) then take the form

\[C_t^* = aW_t + b \]

and

\[\omega_t^* = g + \frac{h}{W_t} \]
CRRA and Constant Investment Opportunities

- Here a, b, g, and h are, at most, functions of time.
- For the special case of constant relative risk aversion where $U(C, t) = e^{-\rho t} C^{\gamma}/\gamma$, the solution is

$$J(W, t) = e^{-\rho t} \left[\frac{1 - e^{-a(T-t)}}{a} \right]^{1-\gamma} W^\gamma/\gamma$$ \hspace{1cm} (33)

$$C^*_t = \frac{a}{1 - e^{-a(T-t)}} W_t$$ \hspace{1cm} (34)

and

$$\omega^* = \frac{\mu - r}{(1 - \gamma)\sigma^2}$$ \hspace{1cm} (35)

where $a \equiv \frac{\gamma}{1-\gamma} \left[\frac{\rho}{\gamma} - r - \frac{(\mu - r)^2}{2(1-\gamma)\sigma^2} \right]$.

George Pennacchi
University of Illinois
Continuous-Time Consumption and Portfolio Choice 20/ 57
Implications of Continuous-Time Decisions

- When the individual’s planning horizon is infinite, $T \to \infty$, a solution exists only if $a > 0$.
- In this case with $T \to \infty$, $C_t^* = aW_t$.
- Although we obtain the Markowitz result in continuous time, it is not the same result as in discrete time.
- For example, a CRRA individual facing normally distributed returns and discrete-time portfolio rebalancing will choose to put all wealth in the risk-free asset.
- In contrast, this individual facing lognormally-distributed returns and continuous portfolio rebalancing chooses $\omega^* = (\mu - r) / [(1 - \gamma)\sigma^2]$, which is independent of the time horizon.
Changing Investment Opportunities

- Consider the effects of changing investment opportunities by simply assuming a single state variable so that \(k = 1 \) and \(x \) is a scalar that follows the process

\[
dx = a(x, t) \, dt + b(x, t) \, d\zeta
\]

(36)

where \(b \, d\zeta \sigma_i \, dz_i = \phi_i \, dt \).

- The optimal portfolio weights in (21) are

\[
\omega_i^* = - \frac{J_W}{W J_{WW}} \sum_{j=1}^{n} v_{ij} (\mu_j - r) - \frac{J_{Wx}}{W J_{WW}} \sum_{j=1}^{n} v_{ij} \phi_j, \quad i = 1, \ldots, n
\]

(37)
Portfolio Weights with Changing Investment Opportunities

- Written in matrix form, equation (37) is

\[
\omega^* = \frac{A}{W} \Omega^{-1} (\mu - re) + \frac{H}{W} \Omega^{-1} \phi
\]

(38)

where \(\omega^* = (\omega_1^* \ldots \omega_n^*)' \) is the \(n \times 1 \) vector of portfolio weights for the \(n \) risky assets; \(\mu = (\mu_1 \ldots \mu_n)' \) is the \(n \times 1 \) vector of these assets’ expected rates of return; \(e \) is an \(n \)-dimensional vector of ones, \(\phi = (\phi_1, \ldots, \phi_n)' \), \(A = -\frac{J_w}{J_{ww}} \), and \(H = -\frac{J_{wx}}{J_{ww}} \).

- \(A \) and \(H \) will, in general, differ from one individual to another, depending on the form of the particular individual’s utility function and level of wealth.
Three Fund Theorem

- Thus, unlike in the constant investment opportunity set case (where $J_{Wx} = H = 0$), ω_i^*/ω_j^* is not the same for all investors.
- A two mutual fund theorem does not hold, but with one state variable, x, a three fund theorem does hold.
- Investors will be satisfied choosing between
 1. A fund holding the risk-free asset.
 2. A mean-variance efficient fund with weights $\Omega^{-1}(\mu - re)$.
 3. A fund with weights $\Omega^{-1}\phi$ that best hedges against changing investment opportunities.
Portfolio Demands

- Recall \(J_W = U_C \), which allows us to write \(J_{WW} = U_{CC} \frac{\partial C}{\partial W} \).

- Therefore, \(A \) can be rewritten as

\[
A = - \frac{U_C}{U_{CC} \left(\frac{\partial C}{\partial W} \right)} > 0
\]

(39)

by the concavity of \(U \). Also, since \(J_{WX} = U_{CC} \frac{\partial C}{\partial x} \),

\[
H = - \frac{\frac{\partial C}{\partial x}}{\frac{\partial C}{\partial W}} \leq 0
\]

(40)

- \(A \) is proportional to the reciprocal of the individual’s absolute risk aversion, so the smaller is \(A \), the smaller in magnitude is the individual’s demand for any risky asset.
Hedging Demand

- An unfavorable shift in investment opportunities is defined as a change in x such that consumption falls, that is, an increase in x if $\partial C/\partial x < 0$ and a decrease in x if $\partial C/\partial x > 0$.

- For example, suppose Ω is a diagonal matrix, so that $\nu_{ij} = 0$ for $i \neq j$ and $\nu_{ii} = 1/\sigma_{ii} > 0$, and also assume that $\phi_i \neq 0$. In this case, the hedging demand for risky asset i in (38) is

$$H\nu_{ii}\phi_i = -\frac{\partial C/\partial x}{\partial C/\partial W} \nu_{ii}\phi_i > 0 \text{ iff } \frac{\partial C}{\partial x} \phi_i < 0 \quad (41)$$

- Thus, if $\partial C/\partial x < 0$ and if x and asset i are positively correlated ($\phi_i > 0$), then there is a positive hedging demand for asset i; that is, $H\nu_{ii}\phi_i > 0$ and asset i is held in greater amounts than what would be predicted based on a simple single-period mean-variance analysis.
Let \(r = x \) and \(\mu = re + p = xe + p \) where \(p \) is a vector of risk premia for the risky assets.

Thus, an increase in the risk-free rate \(r \) indicates an improvement in investment opportunities.

Recall that in a simple certainty model with constant relative-risk-aversion utility, the elasticity of intertemporal substitution is given by \(\epsilon = 1 / (1 - \gamma) \).

When \(\epsilon < 1 \), implying that \(\gamma < 0 \), an increase in the risk-free rate leads to greater current consumption consistent with equation (34) where, for the infinite horizon case \(C_t = \frac{\gamma}{1-\gamma} \left[\frac{p}{\gamma} - r - \frac{(\mu-r)^2}{2(1-\gamma)\sigma^2} \right] W_t = \frac{\gamma}{1-\gamma} \left[\frac{p}{\gamma} - r - \frac{p^2}{2(1-\gamma)\sigma^2} \right] W_t \), so that \(\partial C_t / \partial r = -\gamma W_t / (1 - \gamma) \).
Given empirical evidence that risk aversion is greater than log \((\gamma < 0)\), the intuition from these simple models would be that \(\partial C_t/\partial r > 0\) and is increasing in risk aversion.

From equation (41) we have

\[
H_{\nu i} \phi_i = -\frac{\partial C}{\partial C/\partial W} \nu_{\nu i} \phi_i > 0 \text{ iff } \frac{\partial C}{\partial r} \phi_i < 0 \tag{42}
\]

Thus, there is a positive hedging demand for an asset that is negatively correlated with changes in the interest rate, \(r\).

An obvious candidate asset is a long-maturity bond.

This insight can explain why financial planners recommend both greater cash and a greater bonds-to-stocks mix for more risk-averse investors (the Asset Allocation Puzzle of Canner, Mankiw, and Weil AER 1997).
Log Utility

- Logarithmic utility is one of the few cases in which analytical solutions are possible for consumption and portfolio choices when investment opportunities are changing.
- Suppose \(U(C_s, s) = e^{-\rho s} \ln(C_s) \) and \(B(W_T, T) = e^{-\rho T} \ln(W_T) \).
- Consider a trial solution to (17) for the indirect utility function of the form \(J(W, x, t) = d(t) U(W_t, t) + F(x, t) = d(t) e^{-\rho t} \ln(W_t) + F(x, t) \).
- If so, then (20) is
 \[
 C_t^* = \frac{W_t}{d(t)} \quad (43)
 \]
 and (37) simplifies to
 \[
 \omega_i^* = \sum_{j=1}^n \nu_{ij} (\mu_j - r) \quad (44)
 \]
Substituting C_t^* and ω_i^* into the Bellman equation (17):

$$0 = U(C_t^*, t) + J_t + J_W [rW_t - C_t^*] + a(x, t) J_x$$

$$+ \frac{1}{2} b(x, t)^2 J_{xx} - \frac{J_W^2}{2J_{WW}} \sum_{i=1}^{n} \sum_{j=1}^{n} \omega_{ij} (\mu_j - r)(\mu_i - r)$$

$$= e^{-\rho t} \ln \left[\frac{W_t}{d(t)} \right] + e^{-\rho t} \left[\frac{\partial d(t)}{\partial t} - \rho d(t) \right] \ln [W_t] + F_t$$

$$+ e^{-\rho t} d(t) r - e^{-\rho t} + a(x, t) F_x + \frac{1}{2} b(x, t)^2 F_{xx}$$

$$+ \frac{d(t) e^{-\rho t}}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \omega_{ij} (\mu_j - r)(\mu_i - r)$$

(45)
Log Utility

Simplifying, the equation becomes

\[0 = -\ln [d(t)] + \left[1 + \frac{\partial d(t)}{\partial t} - \rho d(t) \right] \ln [W_t] + e^{\rho t} F_t + d(t) r - 1 + a(x, t) e^{\rho t} F_x + \frac{1}{2} b(x, t)^2 e^{\rho t} F_{xx} + \frac{d(t)}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \nu_{ij} (\mu_j - r) (\mu_i - r) \]

(46)
Log Utility

- Since a solution must hold for all values of wealth, we must have
 \[\frac{\partial d(t)}{\partial t} - \rho d(t) + 1 = 0 \]
 \[\text{(47)} \]
 subject to the boundary condition \(d(T) = 1 \).
- The solution to this first-order ordinary differential equation is
 \[d(t) = \frac{1}{\rho} \left[1 - (1 - \rho) e^{-\rho(T-t)} \right] \]
 \[\text{(48)} \]
Log Utility

The complete solution to (46) is then to solve

\[
0 = - \ln [d(t)] + e^{\rho t} F_t + d(t) r - 1 + a(x, t) e^{\rho t} F_x \\
+ \frac{1}{2} b(x, t)^2 e^{\rho t} F_{xx} + \frac{d(t)}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} v_{ij} (\mu_j - r) (\mu_i - r)
\]

subject to the boundary condition \(F(x, T) = 0 \).

The solution depends on how \(r \), the \(\mu_i \)'s, and \(\Omega \) are assumed to depend on the state variable \(x \).

However, these relationships influence only the level of indirect utility via \(F(x, t) \) and do not affect \(C_t^* \) and \(\omega_i^* \).
Log Utility

• Substituting (48) into (43), consumption is

\[C_t = \frac{\rho}{1 - (1 - \rho) e^{-\rho(T-t)}} W_t \] \hspace{1cm} (50)

which is comparable to our earlier discrete-time problem.

• The log utility investor behaves myopically by having no desire to hedge against changes in investment opportunities, though the portfolio weights \(\omega_i^* = \sum_{j=1}^{n} v_{ij} (\mu_j - r) \) will change over time as \(v_{ij}, \mu_j, \) and \(r \) change.
The Martingale Approach

- Modify process (1) to write the return on risky i as

$$dS_i/S_i = \mu_i dt + \Sigma_i d\mathbf{Z}, \quad i = 1, \ldots, n$$ \hspace{1cm} (51)$$

where $\Sigma_i = (\sigma_{i1} \ldots \sigma_{in})$ is a $1 \times n$ vector of volatility terms and $d\mathbf{Z} = (dz_1 \ldots dz_n)'$ is an $n \times 1$ vector of independent Brownian motions.

- μ_i, Σ_i, and $r(t)$ may be functions of state variables driven by the Brownian motion elements of $d\mathbf{Z}$.

- If Σ is the $n \times n$ matrix whose i^{th} row equals Σ_i, then the covariance matrix of the assets’ returns is $\Omega \equiv \Sigma \Sigma'$.
Complete Market Assumptions

- Importantly, we now assume that uncertain changes in the means and covariances of the asset return processes in (51) are driven only by the vector $d\mathbf{Z}$.
- Equivalently, each state variable, say x_i as represented in (2), has a Brownian motion process, $d\zeta_i$, that is a linear function of $d\mathbf{Z}$.
- Thus, changes in investment opportunities can be perfectly hedged by the n assets so that markets are dynamically complete.
Using a Black-Scholes hedging argument and the absence of arbitrage, we showed that a stochastic discount factor exists and follows the process

\[\frac{dM}{M} = -rdt - \Theta(t)'dZ \quad (52) \]

where \(\Theta = (\theta_1 \ldots \theta_n)' \) is an \(n \times 1 \) vector of market prices of risks associated with each Brownian motion and

\[\mu_i - r = \Sigma_i \Theta, \quad i = 1, \ldots, n \quad (53) \]
Optimal Consumption Plan

- Note that the individual’s wealth equals the expected discounted value of the dividends (consumption) that it pays over the individual’s planning horizon plus discounted terminal wealth

$$W_t = E_t \left[\int_t^T \frac{M_s}{M_t} C_s ds + \frac{M_T}{M_t} W_T \right]$$ \hspace{1cm} (54)

- Equation (54) can be interpreted as an intertemporal budget constraint.
The choice of consumption and terminal wealth can be transformed into a static optimization problem by the following Lagrange multiplier problem:

$$\max_{C_s \forall s \in [t, T], W_T} E_t \left[\int_t^T U(C_s, s) \, ds + B(W_T, T) \right]$$

$$+ \lambda \left(M_t W_t - E_t \left[\int_t^T M_s C_s \, ds + M_T W_T \right] \right)$$

(55)

Later, we address the portfolio choice problem that would implement the consumption plan.
First Order Conditions

- Treating the integrals in (55) as summations over infinite points in time, the first-order conditions for optimal consumption at each date and for terminal wealth are

\[
\frac{\partial U(C_s, s)}{\partial C_s} = \lambda M_s, \quad \forall s \in [t, T]
\] (56)

\[
\frac{\partial B(W_T, T)}{\partial W_T} = \lambda M_T
\] (57)

- Define the inverse functions \(G = [\partial U/\partial C]^{-1} \) and \(G_B = [\partial B/\partial W]^{-1} \):

\[
C_s^* = G(\lambda M_s, s), \quad \forall s \in [t, T]
\] (58)

\[
W_T^* = G_B(\lambda M_T, T)
\] (59)
Determining the Lagrange multiplier

- Substitute (58) and (59) into (54) to obtain

\[
W_t = E_t \left[\int_t^T \frac{M_s}{M_t} G (\lambda M_s, s) \, ds + \frac{M_T}{M_t} G_B (\lambda M_T, T) \right] \quad (60)
\]

- Given the initial wealth, \(W_t \), the distribution of \(M_s \) from (52), and the forms of the utility and bequest functions (which determine \(G \) and \(G_B \)), the expectation in equation (60) can be calculated to determine \(\lambda \) as a function of \(W_t, M_t, \) and any date \(t \) state variables.
Alternative Solution for the Multiplier

Since W_t represents a contingent claim that pays a dividend equal to consumption, it must satisfy a particular Black-Scholes-Merton partial differential equation (PDE).

For example, assume that $\mu_i, \Sigma_i,$ and $r(t)$ are functions of a single state variable, say, x_t, that follows the process

$$dx = a(x, t) \, dt + B(x, t)' \, dZ$$

where $B(x, t) = (B_1...B_n)'$ is an $n \times 1$ vector of volatilities multiplying the Brownian motion components of dZ.

Based on (60) and the Markov nature of M_t in (52) and x_t in (61), the date t value of optimally invested wealth is a function of M_t and x_t and the individual’s time horizon, $W(M_t, x_t, t)$.
Wealth Process

- By Itô’s lemma, $W(M_t, x_t, t)$ follows the process

$$
\begin{align*}
 dW &= W_M dM + W_x dx + \frac{\partial W}{\partial t} dt + \frac{1}{2} W_{MM} (dM)^2 \\
 & \quad + W_{Mx} (dM) (dx) + \frac{1}{2} W_{xx} (dx)^2 \\
 &= \mu_W dt + \Sigma'_W dZ
\end{align*}
$$

where

$$
\begin{align*}
 \mu_W &\equiv -r MW_M + aW_x + \frac{\partial W}{\partial t} + \frac{1}{2} \Theta' \Theta M^2 W_{MM} \\
 -\Theta' B M W_{Mx} + \frac{1}{2} B' B W_{xx} \\
 \Sigma_W &\equiv -W_M M \Theta + W_x B
\end{align*}
$$
No Arbitrage Condition for Wealth

- The expected return on wealth must earn the instantaneous risk-free rate plus its risk premium:

\[\mu_W + G(\lambda M_t, t) = rW_t + \Sigma'_W \Theta \] \hspace{1cm} (65)

- Substituting in for \(\mu_W \) and \(\Sigma'_W \) leads to the PDE

\[0 = \Theta' \Theta M^2 \frac{W_{MM}}{2} - \Theta' B M W_{Mx} + B' B \frac{W_{xx}}{2} + (\Theta' \Theta - r) M W_M \]

\[+ (a - B' \Theta) W_x + \frac{\partial W}{\partial t} + G(\lambda M_t, t) - rW \] \hspace{1cm} (66)

which is solved subject to the boundary condition

\[W(M_T, x_T, T) = G_B(\lambda M_T, T). \]
Solution for Consumption

Either equation (60) or (66) leads to the solution
\[W(M_t, x_t, t; \lambda) = W_t \]
that determines \(\lambda \) as a function of \(W_t, M_t, \) and \(x_t \).

The solution for \(\lambda \) is then be substituted into (58) and (59) to obtain \(C_s^*(M_s) \) and \(W_T^*(M_T) \).

When the individual follows this optimal policy, it is time consistent in the sense that should the individual resolve the optimal consumption problem at some future date, say, \(s > t \), the computed value of \(\lambda \) will be the same as that derived at date \(t \).
Portfolio Allocation

- Market completeness permits replication of the individual’s optimal process for wealth and its consumption dividend.
- The individual’s wealth follows the process

\[dW = \omega' (\mu - re) W dt + (rW - C_t) dt + W \omega' \Sigma dZ \]

(67)

where \(\omega = (\omega_1...\omega_n)' \) are portfolio weights and \(\mu = (\mu_1...\mu_n)' \) are assets’ expected rates of return.
- Equating the coefficients of wealth’s Brownian motions in (67) and (62) implies \(W \omega' \Sigma = \Sigma'_W \).
- Substituting in (64) for \(\Sigma_W \) and rearranging:

\[\omega = - \frac{MW_M}{W} \Sigma'^{-1} \Theta + \frac{W_x}{W} \Sigma'^{-1} B \]

(68)
The no-arbitrage condition (53) in matrix form is

\[\mu - r e = \Sigma \Theta \]

Using (69) to substitute for \(\Theta \), equation (68) is

\[\omega = - \frac{M W_M}{W} \Sigma^{-1} \Sigma'^{-1} (\mu - r e) + \frac{W_x}{W} \Sigma'^{-1} B \]

\[= - \frac{M W_M}{W} \Omega^{-1} (\mu - r e) + \frac{W_x}{W} \Sigma'^{-1} B \]

A comparison to (38) for the case of perfect correlation between assets and state variables shows that \(MW_M = J_W / J_{WW} \) and \(W_x = -J_{WX} / J_{WW} \).

Given \(W(M, x, t) \) in (60) or (66), the solution is complete.
Example of Wachter JFQA (2002)

- Let there be a risk-free asset with constant rate of return \(r > 0 \), and a single risky asset with price process

\[
dS/S = \mu(t) \, dt + \sigma \, dz
\]

(71)

- Volatility, \(\sigma \), is constant but the market price of risk, \(\theta(t) = (\mu(t) - r)/\sigma \), satisfies the Ornstein-Uhlenbeck process

\[
d\theta = a (\bar{\theta} - \theta) \, dt - b \, dz
\]

(72)

where \(a, \bar{\theta}, \) and \(b \) are positive constants.

- Since \(\mu(t) = r + \theta(t) \sigma \) so that \(d\mu = \sigma \, d\theta \), the expected rate of return is lower (\textit{higher}) after its realized return has been high (\textit{low}).
Individual’s Expected Utility

- With CRRA and a zero bequest, (55) is

\[
\max_{C_s \forall s \in [t,T]} E_t \left[\int_t^T e^{-\rho s} \frac{C^\gamma}{\gamma} \, ds \right] + \lambda \left(M_t W_t - E_t \left[\int_t^T M_s C_s \, ds \right] \right)
\]

(73)

- The first-order condition (58) is

\[
C_s^* = e^{-\frac{\rho s}{1-\gamma} \left(\lambda M_s \right)^{-\frac{1}{1-\gamma}}} , \quad \forall s \in [t, T]
\]

(74)

so that (60) is

\[
W_t = E_t \left[\int_t^T \frac{M_s}{M_t} e^{-\frac{\rho s}{1-\gamma} \left(\lambda M_s \right)^{-\frac{1}{1-\gamma}}} \, ds \right]
\]

(75)
Wealth and the Pricing Kernel

- $E_t \left[M_s^{\gamma (1-\gamma)} \right]$ could be computed by noting that

 \[
dM / M = -rdt - \theta dz \quad \text{and} \quad \theta \quad \text{follows the process in (72)}.
 \]

- Alternatively, W_t can be solved using PDE (66):

 \[
 0 = \frac{1}{2} \theta^2 M^2 W_{MM} + \theta b MW_{M\theta} + \frac{1}{2} b^2 W_{\theta\theta} + (\theta^2 - r) MW_M
 \]
 \[
 + \left[a (\bar{\theta} - \theta) + b \theta \right] W_{\theta} + \partial_t W + e^{-\frac{pt}{1-\gamma}} (\lambda M_t)^{-\frac{1}{1-\gamma}} - rW
 \]

 subject to boundary condition $W (M_T, \theta_T, T) = 0$.

George Pennacchi
University of Illinois
Continuous-Time Consumption and Portfolio Choice
50/ 57
When $\gamma < 0$, so the individual is more risk averse than log utility, the solution to (76) is

$$W_t = (\lambda M_t)^{-1-\gamma} e^{-\rho t} \int_0^{T-t} H(\theta_t, \tau) d\tau \quad (77)$$

where $H(\theta_t, \tau)$ is the exponential of a quadratic function of θ_t given by

$$H(\theta_t, \tau) \equiv e^{1-\gamma \left[A_1(\tau) \frac{\theta_t^2}{2} + A_2(\tau) \theta_t + A_3(\tau) \right]} \quad (78)$$
Solution – continued

and where

\[A_1(\tau) \equiv \frac{2c_1(1 - e^{-c_3\tau})}{2c_3 - (c_2 + c_3)(1 - e^{-c_3\tau})} \]

\[A_2(\tau) \equiv \frac{4c_1a\bar{\theta}(1 - e^{-c_3\tau/2})^2}{c_3[2c_3 - (c_2 + c_3)(1 - e^{-c_3\tau})]} \]

\[A_3(\tau) \equiv \int_0^\tau \left[\frac{b^2A_2^2(s)}{2(1 - \gamma)} + \frac{b^2A_1(s)}{2} + a\bar{\theta}A_2(s) + \gamma r - \rho \right] ds \]

with \(c_1 \equiv \gamma/(1 - \gamma) \), \(c_2 \equiv -2(a + c_1b) \), and \(c_3 \equiv \sqrt{c_2^2 - 4c_1b^2}/(1 - \gamma) \).
Optimal Consumption

- Equation (77) can be inverted to solve for λ, but since from
 $\left(\lambda M_t\right)^{-\frac{1}{1-\gamma}} e^{-\frac{\rho t}{1-\gamma}} = C_t^*$, (77) can be rewritten

 $$C_t^* = \frac{W_t}{\int_0^{T-t} H(\theta_t, \tau) \, d\tau}$$

 (79)

- Note that wealth equals the value of consumption from now until $T - t$ periods into the future.

- Therefore, since $\int_0^{T-t} H(\theta_t, \tau) \, d\tau = W_t/C_t^*$, the function $H(\theta_t, \tau)$ equals the value of consumption τ periods in the future scaled by current consumption.
Consumption Implications

- When $\gamma < 0$ and $\theta_t > 0$, so that $\mu(t) - r > 0$, then $\frac{\partial (C_t^*/W_t)}{\partial \theta_t} > 0$; that is, the individual consumes a greater proportion of wealth the larger is the risky asset’s excess rate of return.

- This is what one expects given our earlier analysis showing that the "income" effect dominates the "substitution" effect when risk aversion is greater than that of log utility.
Portfolio Choice

- The weight (70) for a single risky asset is

\[
\omega = -\frac{MW_M \mu(t) - r}{W} - \frac{W_\theta b}{W \sigma^2}
\]

(80)

- Using (77), \(-MW_M/W = 1/(1-\gamma)\) and \(W_\theta\) can be computed. Substituting these two derivatives into (80) gives

\[
\omega = \frac{\mu(t) - r}{(1-\gamma)\sigma^2} - \frac{b \int_0^{T-t} H(\theta_t, \tau) [A_1(\tau) \theta_t + A_2(\tau)] d\tau}{(1-\gamma) \sigma \int_0^{T-t} H(\theta_t, \tau) d\tau}
\]

\[
= \frac{\mu(t) - r}{(1-\gamma)\sigma^2}
\]

\[
- \frac{b}{(1-\gamma) \sigma} \int_0^{T-t} \frac{H(\theta_t, \tau)}{\int_0^{T-t} H(\theta_t, \tau) d\tau} [A_1(\tau) \theta_t + A_2(\tau)] d\tau
\]

(81)
Portfolio Implications

- The first term of (81) is the mean-variance efficient portfolio.
- The second term is the hedging demand.
- $A_1(\tau)$ and $A_2(\tau)$ are negative when $\gamma < 0$, so that if $\theta_t > 0$, the term $[A_1(\tau)\theta_t + A_2(\tau)]$ is unambiguously negative and, therefore, the hedging demand is positive.
- Hence, individuals more risk averse than log invest more wealth in the risky asset than if investment opportunities were constant.
- Because of negative correlation between risky-asset returns and future investment opportunities, overweighting in the risky asset means that unexpectedly good returns today hedge against returns that are expected to be poorer tomorrow.
Summary

• We considered an individual’s continuous-time consumption and portfolio choice problem when asset returns followed diffusion processes.

• With constant investment opportunities, asset returns are lognormally distributed and optimal portfolio weights are similar to those of the single-period mean-variance model.

• With changing investment opportunities, optimal portfolio weights reflect demand components that seek to hedge against changing investment opportunities.

• The Martingale Approach to solving for an individual’s optimal consumption and portfolio choices is applicable to a complete markets setting where asset returns can perfectly hedge against changes in investment opportunities.