ECONOMIC INTEGRATION WITHOUT POLICY COORDINATION:
THE CASE OF MERCOSUR

By

Werner Baer*
University of Illinois at Urbana-Champaign

Tiago Cavalcanti
New University of Lisbon

and

Peri Silva
University of Illinois at Urbana-Champaign

Abstract

This paper analyses the evolution of the South American Common Market, Mercosur. We show how the lack of coordination of macroeconomic policies, especially of the two major participants (Argentina and Brazil), had caused trade strains and conflicting interests in attracting foreign direct investments. Divergent macro-economic policies have had negative effects on bilateral trade due to the risk averseness (resulting from bilateral exchange rate volatilities) of exporters and importers, and due to the protectionist forces they have brought forth. The paper also shows how the lack of policy coordination caused increased confrontations with respect to Foreign Direct Investment in the region.

1 We would like to thank Claudio Paiva, Giovanni Facchini, Earl Grinols, Thomas Hertel, Marcelo Olarreaga, and Roberto Perrelli for many useful suggestions and for facilitating access to data.

* Correspondence to W. Baer: w-baer@uiuc.edu, Department of Economics, University of Illinois at Urbana-Champaign.
1) Introduction

The common market of Argentina, Brazil, Uruguay and Paraguay (Mercosur) was created in 1991 by the Assuncion Treaty. Trade within Mercosur increased substantially since that time. For instance, in the period 1990-98 the share of intra-Mercosur exports rose from 9 to 25 percent of total Mercosur exports. This occurred while different stabilization programs were instituted in the region’s largest economies, Argentina and Brazil. As the macroeconomic policies pursued to stabilize these two large economies were substantially different, they gradually threatened the existence of Mercosur.

Excessive price and exchange rate fluctuations resulting from uncoordinated macroeconomic policies affect international trade and the allocation of investments among members of a trade area. There are two main channels through which the lack of macroeconomic coordination affects international trade. First, there is an increased level of risk in international transactions (risk channel), which may induce producers to refrain from exporting or importing and, therefore, causing an allocation of resources different than what would be suggested from comparative advantage. It also stimulates lobbying for protection from imports when there exists a substantial increase in the import penetration ratio (lobbying channel).

Uncoordinated macroeconomic policies may also affect the allocation of investments among countries belonging to a common market as a result of major swings in the real effective exchange rate. Major changes in the real effective exchange rate may increase or decrease the returns on investments and thus induce shifts in the location of new production plants and the reallocation of existing ones. In a context of considerable increase of foreign direct investment (FDI), as is the case of Mercosur, some strains among its members regarding the inflows and stock of FDI should increase in importance over time.

2 Inter-American Development Bank (1999), pg. 25.
3 The prioritization of stabilization programs instead of commercial integration may also produce a lack of tax harmonization between members of a trade area. The lack of tax harmonization may cause an excess flow of capital within and from outside the region to those countries with the lowest taxes. This is not necessarily the most efficient location, and it may also lead to confrontation among the members of the common market and result in controls over the free movement of capital within the region. See Brandão and Pereira (1997), ch. 5.
Thus, the expected expansion of regional trade and investment flows, and even the formation of a common market\(^4\), may be hampered by the fact that the two main countries of Mercosur do not have their economic policies directed towards economic integration. The objective of this paper is to investigate whether uncoordinated macroeconomic policies of Brazil and Argentina can hamper the further expansion of trade flows in the region through the increase of risk involved in regional transactions and through the implementation of trade protection measures originating from the lobbying of interest groups. We also examine how the lack of macroeconomic coordination among Mercosur’s members may affect the allocation of FDI and present some evidence of strains between Brazil and Argentina related to FDI allocation.

Our work clearly relates to an earlier literature on Mercosur, in particular, to Bevilaqua (1997), Olarreaga and Soloaga (1998) and Flôres et alii (2000). Bevilaqua emphasized the risk channel while neglecting the lobbying impact. The others concentrated mainly on the political economy aspect of protection (lobbying channel), while neglecting the results of the lack of macroeconomic coordination and the risk channel. Our contribution is to take all these variables into account, and also to incorporate the impact on investment flows to the region.

The paper is presented in the following sequence. Section 2 describes the evolution of trade integration since the creation of Mercosur. It also describes how this period can be divided into sub-periods, depending on acute divergences of macroeconomic policies between Brazil and Argentina and presents some examples of trade strains between these two countries. Section 3 describes and tests how uncoordinated macroeconomic policies affect trade through risk and through the political economy of trade. In the latter case we focus on the description of what in the literature is called a trade barrier equation. The variables contained in a trade barrier equation are important in the definition of the level of protection in each sector of the economy. The equilibrium protection of each sector is defined by the demanders of protection, i.e. the lobbies, and by the suppliers of protection, the politicians. In the same section, we briefly describe the FDI flows to Brazil and Argentina in the nineties, and examine the relation between the lack of

\(^4\) The formation of a common market was one of the targets of the Asuncion Treaty. See Averburg (1997), pg. 3. Giambiagi (1999, pg. 20) goes further and defend that Mercosur should move towards a monetary
macroeconomic coordination and FDI allocation between these countries, presenting some evidence showing potential problems between these two countries regarding FDI distribution. Section 4 presents our major conclusions and some policy implications.

2) Trade Integration and Lack of Macroeconomic Coordination

2.1) Trade Integration

Mercosur (called Mercosul in Brazil) was created in 1991 by the Treaty of Asunción. It established a program of gradual, automatic and across-the-board elimination of import duties between June 1991 and December 1994. Most tariffs were dismantled according to a set timetable, and since 1995 most intra-regional trade faced zero duties. A common external tariff (CET) structure was established in January 1995, ranging from zero to 20 percent. The CET applies to 85 percent of total trade and lists of temporary exemptions affect 300 items in each country.

Neither the free trade area nor the CET was fully implemented by the turn of the century. Some sensitive goods were excluded from the free trade area, and capital goods, computers and related software and telecommunications equipment were not yet included in the CET regime. Each Mercosur country can charge its own tariff rate on such goods. For capital goods, tariff rates were supposed to converge at 14 percent by January 2001 for Argentina and Brazil, and by January 2006 for Paraguay and Uruguay. In the case of

union in the long run.

5 Averbug (1997), pg. 4.
6 MERCOSUR Report (various issues). In July of 2001, Argentina unilaterally reduced its extra-regional import tariffs for capital goods and computers equipment. It is still to be known the impacts and repercussions of this measure. See “Analistas dizem que conflito entre os dois países é passageiro,” in O Estado de São Paulo, 11 of July 2001.
7 Although each country should have eliminated all barriers to intra-trade in Mercosur by 1995, they were allowed to have a list of products considered “vulnerable” to foreign competition, which would be protected until 1999 for Brazil and Argentina and 2001 for Uruguay and Paraguay. The Brazilian list included 29 products, the Argentinean 212, the Paraguayan 432 and the Uruguayan 963. See Averbug (1997), pg. 4.
computers and related software and telecommunications equipment, tariff rates are supposed to converge to 16 percent by 2006.

The automobile sector remains outside the sub-regional agreement. By the first half of 2000 Mercosur countries agreed to converge existing national tariffs on extra-regional imports with a common external tariff of 35 percent, effective January 1, 2006, while requirements of local contents for intra-regional tariff-free trade in the sector was set at 60 percent and fiscal incentives at the sub-national level were supposed to end.\(^8\)

Trade integration in Mercosur has undeniably increased since the Asuncion Treaty. Table 1 and table 2 show growth rates of import and export for the two main partners in Mercosur, Brazil and Argentina. Table 1 shows that in the nineties Brazil’s exports grew on average 6% but its exports to Mercosur grew about 23% or almost three times more than its total exports. Brazil’s total imports grew on average about 12% in the nineties while its imports from Mercosur countries about 15%.

Table 1 - Growth Rate of Brazil's Trade with Mercosur

<table>
<thead>
<tr>
<th>Year</th>
<th>Total exports</th>
<th>Exports to Argentina</th>
<th>Exports to Mercosur</th>
<th>Total imports</th>
<th>Imports from Argentina</th>
<th>Imports from Mercosur</th>
</tr>
</thead>
<tbody>
<tr>
<td>1991</td>
<td>0.7</td>
<td>128.8</td>
<td>74.9</td>
<td>1.8</td>
<td>15.4</td>
<td>-2.2</td>
</tr>
<tr>
<td>1992</td>
<td>13.2</td>
<td>105.9</td>
<td>77.4</td>
<td>-2.3</td>
<td>7.2</td>
<td>-1.8</td>
</tr>
<tr>
<td>1993</td>
<td>7.7</td>
<td>20.4</td>
<td>31.5</td>
<td>22.9</td>
<td>56.9</td>
<td>51.6</td>
</tr>
<tr>
<td>1994</td>
<td>12.9</td>
<td>13.0</td>
<td>9.9</td>
<td>31.0</td>
<td>34.8</td>
<td>35.7</td>
</tr>
<tr>
<td>1995</td>
<td>6.8</td>
<td>-2.3</td>
<td>3.9</td>
<td>50.5</td>
<td>52.7</td>
<td>49.3</td>
</tr>
<tr>
<td>1996</td>
<td>2.7</td>
<td>27.9</td>
<td>18.7</td>
<td>7.1</td>
<td>21.7</td>
<td>21.3</td>
</tr>
<tr>
<td>1997</td>
<td>11.0</td>
<td>31.0</td>
<td>23.8</td>
<td>12.0</td>
<td>18.0</td>
<td>14.6</td>
</tr>
<tr>
<td>1998</td>
<td>-3.5</td>
<td>-0.3</td>
<td>-1.9</td>
<td>-3.4</td>
<td>0.0</td>
<td>-0.9</td>
</tr>
<tr>
<td>1999</td>
<td>-6.1</td>
<td>-20.5</td>
<td>-23.7</td>
<td>-14.7</td>
<td>-27.7</td>
<td>-28.7</td>
</tr>
<tr>
<td>2000</td>
<td>14.7</td>
<td>16.2</td>
<td>14.1</td>
<td>13.3</td>
<td>17.7</td>
<td>16.0</td>
</tr>
</tbody>
</table>

Average 6.0 32.0 22.9 11.8 19.7 15.5

Source: Brasil - Ministerio do Desenvolvimento, Industria e Comercio

Table 2 shows the increasing importance to Argentina of trade with Mercosur members. While Argentina’s exports grew on average about 8% in the nineties its exports

\(^8\) Inter-American Development Bank (2000), pg. 52.
to Mercosur grew about 19%. In the same period Argentinean imports grew on average about 25% while its import from Mercosur’s countries about 30%.

<table>
<thead>
<tr>
<th>Year</th>
<th>Total Exports</th>
<th>Exports to Brazil</th>
<th>Exports to Mercosur</th>
<th>Total Imports</th>
<th>Imports from Brazil</th>
<th>Imports from Mercosur</th>
</tr>
</thead>
<tbody>
<tr>
<td>1991</td>
<td>-2.4</td>
<td>7.1</td>
<td>11.1</td>
<td>105.4</td>
<td>114.3</td>
<td>112.5</td>
</tr>
<tr>
<td>1992</td>
<td>3.3</td>
<td>13.3</td>
<td>10.0</td>
<td>81.5</td>
<td>120.0</td>
<td>111.8</td>
</tr>
<tr>
<td>1993</td>
<td>7.0</td>
<td>64.1</td>
<td>66.4</td>
<td>13.3</td>
<td>12.1</td>
<td>13.9</td>
</tr>
<tr>
<td>1994</td>
<td>20.8</td>
<td>31.2</td>
<td>31.1</td>
<td>29.0</td>
<td>15.9</td>
<td>16.6</td>
</tr>
<tr>
<td>1995</td>
<td>32.1</td>
<td>50.5</td>
<td>41.5</td>
<td>-6.7</td>
<td>-2.8</td>
<td>-4.0</td>
</tr>
<tr>
<td>1996</td>
<td>13.6</td>
<td>20.1</td>
<td>16.6</td>
<td>18.5</td>
<td>27.8</td>
<td>26.4</td>
</tr>
<tr>
<td>1997</td>
<td>9.9</td>
<td>22.5</td>
<td>20.7</td>
<td>28.1</td>
<td>29.5</td>
<td>30.9</td>
</tr>
<tr>
<td>1998</td>
<td>0.0</td>
<td>-2.3</td>
<td>-1.8</td>
<td>3.5</td>
<td>2.2</td>
<td>4.5</td>
</tr>
<tr>
<td>1999</td>
<td>-11.8</td>
<td>-28.2</td>
<td>-24.7</td>
<td>-18.5</td>
<td>-20.6</td>
<td>-16.8</td>
</tr>
<tr>
<td>2000</td>
<td>12.7</td>
<td>23.6</td>
<td>18.7</td>
<td>-1.4</td>
<td>15.7</td>
<td>9.1</td>
</tr>
</tbody>
</table>

Average: 8.5 20.2 19.0 25.3 31.4 30.5

Source: INDEC

Even with its many imperfections, the Mercosur led to a sharp reduction in external protection. The average tariff for the trade block declined from 41 percent in 1986 to 12 percent in the late 1990s. In the same period there was a substantial expansion of trade within the region. Between 1990 and 1997, intra-Mercosur exports grew by an average of 26 percent a year, rising from US$ 4 billion to 21 billion. The share of intra-regional share in Mercosur’s total exports rose from 9 percent in 1990 to 25 percent in 1998. This implied a substantial growth in regional trade interdependence. Thus, Brazil accounted for one third of Argentina’s exports by the end of the 1990s, 40 percent of Paraguay’s exports and 35 percent of Uruguay’s exports. In the automotive sector, Brazil accounted for 90% of Argentina’s exports in 1997.

2.2) **Divergent Macroeconomic Policies**

Although Mercosur has successfully increased trade among its members, part of the trade flows within Mercosur were achieved by the economic policies of Brazil and Argentina, which were not primarily directed to trade integration but rather to macroeconomic stability. The period from the creation of Mercosur to the early 2000s
can be divided in three phases, each of them related to different macroeconomic regimes in the two main Mercosur members (the introduction of Argentina’s Convertibility Plan in 1991, of Brazil’s Real Plan in 1994 and the devaluation of the Real in January 1999).

Figure 1a illustrates how each regime affected trade between Argentina and Brazil. One notes a positive trend in bilateral exports, though this declined in 1998 and 1999. Figure 1b shows the behavior of the net trade (deficit/surplus) of Brazil with respect to Argentina during the three phases. As discussed below, this series is consistent with the exchange rate and macroeconomic policies adopted in each country.

Figure 1: Bilateral Trade (Brazil and Argentina): 1990Q1-2000Q3.

The first period extends from the implementation of the Convertibility Plan in Argentina in 1991 to the implementation of the Real Plan in Brazil in 1994. With the implementation of the Convertibility plan, the Argentinean peso was fixed by law at par with the U.S. dollar and the Argentinean central bank could only issue new currency if
backed by U.S. dollars. Although the Convertibility plan caused a sharp reduction in the inflation rate (figure 2), prices in Argentina continued to rise at a higher rate than in the U.S., which caused an appreciation of Argentinean peso vis-à-vis the U.S. dollar (figure 3).

Figure 2: Inflation Rate (Brazil and Argentina): 1990Q1-1999Q4.

At the same time, Brazil continued to live under a high inflationary regime (figure 2), but with constant devaluations vis-à-vis the U.S. dollar, hence also vis-à-vis the Argentinean peso (figure 3). The real appreciation of the peso vis-à-vis the Brazilian currency and the growth boom in Argentina due to the end of inflation, resulted in a change in the trade balance of Argentina with Brazil, from a surplus of US$ 853 million in 1990 to a deficit of US$ 1,031 million in 1993.\footnote{See IMF (1994).}
As a consequence of the increasing trade deficit with Brazil, Argentina’s government took a series of protectionist measures in 1992. It increased the “statistical tax” levied on imports from 3% to 10%, including imports from Mercosur, and implemented safeguards and antidumping measures to protect its industry from foreign competition. Although this was viewed by Brazil as a move which was contrary to the goals of Mercosur, the ultimate reaction of Brazil was pragmatic. In order to help alleviate the bilateral deficit with Argentina, the Brazilian government decided to buy wheat and petroleum from Argentina in 1993.

Figure 3: Effective Exchange Rate (Brazil and Argentina): 1990Q1-2000Q4.

The second period ranges from the implementation of the Real Plan in Brazil in July of 1994 to the Brazilian external crisis of January of 1999. In the first semester of the implementation of the Real Plan (second half of 1994), the Brazilian currency

appreciated heavily vis-à-vis the U.S. dollar, when one Real could buy more than one U.S. dollar, and although the Brazilian inflation dropped sharply, it was still much higher than the U.S. inflation rate.12 Since the Argentinean Peso had a fixed parity with the dollar, the Real appreciated considerably relative to the Peso (figure 3). As a consequence, the Brazilian trade balance with Argentina changed from a surplus of US$ 170 million in 1994 to a deficit of US$ 2,250 million in 1996.13

In response to the deterioration of its trade balance, Brazil took a series of protectionist measures. The tariff on vehicle imports14 was increased, and quotas and restrictions on import credit were applied to selected products (including those produced in Mercosur) in 1995.15 In 1997, Brazil imposed a system of discretionary import licenses on selected products. This was condemned by the Mercosur Tribunal and ordered suspended by 1999. However, Brazil was allowed to postpone the removal of this protectionist measure until the end of 2000.16

The third period ranges from the Brazilian external crisis of January of 1999 until mid-2001. In January of 1999 the Brazilian government had to give up its policy of periodic small devaluations of the Real vis-à-vis the U.S. Dollar due to the accelerated loss of foreign reserves, resulting from a combination of capital outflows and trade deficits.17 As a result the Real was allowed to undergo a drastic devaluation (of 40%) vis-à-vis the U.S. dollar, and hence the Argentinean Peso (figure 3). As a consequence of the

\begin{flushleft}
12 For details of the Real Plan, see Baer (2001), ch. 10.
13 See IMF (1997).
14 Brazil and Argentina have different regimes to protect and develop the auto industry and both regimes should converge to a free trade intra-Mercosur regime by 2006. See Inter-American Development Bank (2000), pgs. 44-48.
15 Padin and Gonzalez (1997), pg. 66.
16 See Inter-American Development Bank (2000), pg. 49.
17 Baer (2001), ch. 10.
\end{flushleft}
Real depreciation, the deficit in the trade balance of Brazil with Argentina decreased from US$ 1,282 million in 1998 to US$448 million in 1999.18

The latest crisis in Argentina, in which GDP shrank by 0.5 % in 2000 and is expected to stagnate in 2001, was “another blow to Mercosur.”19 Argentineans view that their economic recession has been worsened by Brazil’s exchange floating system, in which the Real has lost over 40% of its value since its devaluation in 1999 (figure 2). Nevertheless, Argentina has regained part of its trade surplus with Brazil (figure 1). This was only possible through protective measures in which not only existing trade restrictions were maintained, but also new obstacles to free trade were created. For instance, Brazil and Argentina negotiated voluntary export restrictions on Brazilian shoe exports in order to contain the fast growth of Brazilian exports to Argentina in this sector.20 Also, Argentina proposed a rise in Mercosur’s tariff on consumer goods from 14% to 35% in order to contribute to the economic recovery.21

What are the effects of these uncoordinated policies on the trade integration in Mercosur (Argentina and Brazil)? The next section addresses this issue.

\section*{3) Divergent Macroeconomic Policies and Trade in Mercosur}

Uncoordinated macroeconomic policies give rise to excessive price and exchange rate fluctuations which impact international trade through two different channels.22 The first channel (direct effect) is through the impact on domestic producers’ exports, due to

18 The Brazilian trade with Argentina reached a deficit of US$ 502 millions until the third semester of 2000. See IMF (2000)
19 Latin America: Economy and Business, May 2001 (Latin American Newsletters).
20 Other examples of new voluntary export restrictions are textiles and meat. A good example of quotes and minimum prices is steel products. See: Inter-American Development Bank (2000), pgs. 36-49. Other sources are Pereira (2000) and Baumann (2001, pgs. 51-54).
21 The Economist (March 31st, 2001).
an increase in the variability of the exchange rate. Exchange rate volatility affects risk and may lead risk-averse importers and exporters to reduce their demand and supply of traded goods. The second channel (indirect effect) is through the emergence of lobbies for protection of import competing sectors.

3.1) Exchange Rate Variability and Trade Flows in Mercosur

The effect of exchange rate variability on international trade has long been a major concern for policy-makers. This is also the case in Mercosur. To characterize Brazil’s floating exchange rate system, Argentina’s economy minister, Domingo Cavallo, for instance, posited that “those who devalue their currency are stealing their neighbors’ house.” This is an important observation, since studies have shown that regional integration, in general, reduces the impact of exchange rate volatility on trade by implementing policies to promote macro coordination. One of the stated purposes of the European Union, for instance, was to reduce exchange rate uncertainty and to avoid exchange rate misalignment among European countries to promote intra-trade and investments.

In this section, we investigate the direct effects of exchange rate volatility on intra-trade between the two major Mercosur’s members. This implicitly gives a measure of the gains in bilateral trade from coordination of exchange rate policies. Theoretical models explain this idea very well.

22 Bevilaqua (1997) and Eichengreen (1998) explain this idea very well.
23 VEJA (March 30th, 2001).
24 See, for instance, Frankel and Wei (1993).
26 Caballero and Corbo (1989) shows that increases in the volatility of the real exchange rate may decrease exports and imports depending on the level of risk averseness of individuals. Their model shows that since export firms have the profit function convex on prices, firms tend to increase exports and imports given an increase in exchange rate volatility. However, individuals are risk-averse and an increase in real exchange
on the relation of exchange rate variability and international trade indicate an ambiguous effect of changes of the former on the latter. Since countries within Mercosur present a total lack of macroeconomic coordination, the study of the effects of exchange rate variability on trade among its members may add new insights to the empirical literature on the determinants of trade.

We use the following export supply equation\(^{27}\) to measure the impact of changes in risk on trade between Brazil and Argentina.

\[
\log(X_{it}) = \beta_0 + \beta_1 \log(BRER_{it}) + \beta_3 \text{VOL}_{it} + \beta_4 \log(Y^*_{it}) + \alpha_i + \mu_{it}, \quad i = \text{AR, BR} \tag{1}
\]

where \(X_{it}\) is exports of Argentina (Brazil) to Brazil (Argentina) at period \(t\); \(BRER_{it}\) is the bilateral real exchange rate of Argentina (Brazil) with respect to Brazil (Argentina);\(^{28}\) \(\text{VOL}_{it}\) is our measure of exchange rate variability of Argentina (Brazil) at time \(t\) (see below how we calculate it); \(Y^*_{it}\) is a measure of the trade partner level of activity (GDP); \(\alpha_i\) is a time invariant country specific error; and \(\mu_{it}\) is the remaining disturbance. In all regressions we include a trend and a set of seasonal dummies.

The theory suggests that an increase in the BRER reflects a decrease in the relative cost of producing tradable goods, therefore we expect that exports depend positively on BRER. We also expect that exports depend negatively on the variability of the bilateral rate volatility decrease their savings, and, therefore, the export firms’ capital. Then, we have an ambiguous result.

\(^{27}\) See Gonzaga and Terra (1997), Bevilaqua (1997), and Sauer and Bohara (2001). The generalized export supply equation can be found on Bergstrand (1989).

\(^{28}\) We follow Edwards (1989) to calculate the bilateral effective exchange rate. It is measured as the relative price of tradable to non-tradable goods: \(\text{BEER} = (e \cdot \text{PPI}^*) / \text{CPI}\), where \(e\) is the domestic currency price of foreign exchange, \(\text{PPI}^*\) is the trading partner’s producer price index, and \(\text{CPI}\) is the domestic country’s consumer price index. \(\text{PPI}^*\) and \(\text{CPI}\) are the proxies for the price of tradable and non-tradable goods, respectively (see Edwards (1989) for more details).
exchange rate (VOL), and positively on the level of foreign activity (Y*). We use quarterly data from 1990I to 2000IV.

Figure 4: Monthly Bilateral (Argentina and Brazil) Exchange Rate Volatility.

To compute the bilateral exchange rate variability we use the traditional approach\(^29\) and calculate the standard deviation of the monthly bilateral effective exchange rate changes, in which the standard deviation is taken over the 12 months preceding the observation. Figure 4 displays our measure of exchange rate volatility from 1990M12 to 1999M12. Notice that this variability follows a different pattern for the three phases identified previously. In particular, figure 4 shows that stabilization plans are an important source of real effective exchange rate volatility in the two countries, which is consistent with the findings of the literature\(^30\). Finally, notice that exchange rate volatility

29 See Kenen and Rodrick (1986) and Gonzaga and Terra (1997).
30 For instance, see Gonzaga and Terra (1997).
is higher in Brazil than in Argentina, reflecting the more flexible Brazilian exchange rate regime.

What are the effects of the volatility displayed in figure 4 on the export flows between Brazil and Argentina? The regression results in table 3 shed some light on this question. First, let us discuss some technical issues. In order to identify the country-specific differences, we first estimate the export equation for each country separately. The Durbin-Watson statistic for the Brazilian and Argentinean export equation – columns (1) and (4) - suggests that we cannot accept the null hypothesis of absence of serial correlation. We use the standard Cochrane-Orcutt method to deal with the presence of serial correlation in the errors – columns (2), (3), (5) and (6). To estimate the pooled export equation we use the fixed-effects method – columns (7) and (8),31 that allows for country-specific disturbances and assumes the presence of correlation of the regressors with the country specific errors.32 However, in order to deal with both cross-sectional and serial correlation, we use feasible generalized least square (FGLS) method – columns (9) and (10).

31 Hausman (1978) specification test confirms the appropriateness of the fixed-effects estimator.

32 See Johnston and DiNardo (1997). In addition, when the time period is larger than the number of observations the fixed effects model yields consistent and asymptotically efficient estimates (See Hsiao (1986)).
Table 3: Regression Results – Export Equations.

<table>
<thead>
<tr>
<th></th>
<th>Argentina (1)</th>
<th>Argentina (2)</th>
<th>Argentina (3)</th>
<th>Brazil (4)</th>
<th>Brazil (5)</th>
<th>Brazil (6)</th>
<th>Pooling Regression (7)</th>
<th>Pooling Regression (8)</th>
<th>Pooling Regression (9)</th>
<th>Pooling Regression (10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BEER</td>
<td>0.044</td>
<td>0.071</td>
<td>0.061</td>
<td>0.418</td>
<td>0.147</td>
<td>0.124</td>
<td>0.026</td>
<td>0.027</td>
<td>0.056</td>
<td>0.056</td>
</tr>
<tr>
<td></td>
<td>(0.009)**</td>
<td>(0.016)**</td>
<td>(0.011)**</td>
<td>(0.152)**</td>
<td>(0.288)</td>
<td>(0.272)</td>
<td>(0.006)**</td>
<td>(0.005)**</td>
<td>(0.013)**</td>
<td>(0.012)**</td>
</tr>
<tr>
<td>VOL</td>
<td>-2.04</td>
<td>-1.164</td>
<td>-1.52</td>
<td>-1.862</td>
<td>-0.824</td>
<td>-0.677</td>
<td>-0.759</td>
<td>-0.777</td>
<td>-0.915</td>
<td>-0.667</td>
</tr>
<tr>
<td></td>
<td>(0.623)**</td>
<td>(0.678)*</td>
<td>(0.605)**</td>
<td>(0.683)**</td>
<td>(0.838)</td>
<td>(0.709)</td>
<td>(0.293)**</td>
<td>(0.277)**</td>
<td>(0.393)**</td>
<td>(0.389)*</td>
</tr>
<tr>
<td>VOL*</td>
<td>-0.615</td>
<td></td>
<td>-0.639</td>
<td>-0.845</td>
<td>-0.508</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.233)**</td>
<td></td>
<td>(1.264)</td>
<td>(0.276)**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.828)**</td>
<td>(0.875)</td>
<td>(0.830)**</td>
<td>(1.739)</td>
<td>(1.858)**</td>
<td>(0.954)**</td>
<td>(0.314)**</td>
<td>(0.298)**</td>
<td>(0.623)**</td>
<td>(0.597)**</td>
</tr>
<tr>
<td>N</td>
<td>37</td>
<td>36</td>
<td>36</td>
<td>37</td>
<td>36</td>
<td>36</td>
<td>74</td>
<td>74</td>
<td>74</td>
<td>74</td>
</tr>
<tr>
<td>Adj-R2</td>
<td>0.926</td>
<td>0.624</td>
<td>0.816</td>
<td>0.836</td>
<td>0.488</td>
<td>0.491</td>
<td>0.776</td>
<td>0.885</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DW</td>
<td>0.771</td>
<td>2.003</td>
<td>2.274</td>
<td>0.927</td>
<td>1.752</td>
<td>1.773</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figures in parentheses are standard errors. * and ** indicate significance at the 10% and 5% level, respectively. VOL* is the bilateral exchange rate variability of the trade partner.

Notice that in some regression – columns (3), (6), (8) and (10) - we also added exchange rate variability of the trade partner to investigate how the exchange rate policies in the trade partner affect domestic exports. The sign of the estimated coefficients for all regression models are in accordance to what we postulated previously. If GDP in Brazil increases in 1%, the estimates from Cochrane-Orcutt and FGLS suggest that Argentinean exports will increase in 1.21 to 2.12%. The effect of Argentinean GDP on Brazilian exports is stronger (1.21 to 4.53%). In addition, exchange rate variability has a negative (statistically significant –except in column (5) and (6)) impact on bilateral exports for Brazil and Argentina, and the effects are stronger for the Argentinean equation. The average volatility for the pooled data was 0.025. If this volatility increases by 10%,

33 The results here are in accordance to Sauer and Bohara (2001) who found that exchange rate volatility has a negative impact on exports for Latin American and African countries.
estimates based on FGLS method suggest that exports will decrease by approximately 1%. Therefore, changes in exchange rate policies, such as when the Real lost almost 50% of its value in 1999, can indeed hamper commercial integration in the region. This, in turn, can be reinforced by the formation of lobby groups demanding the introduction of trade barriers (when the level of import penetration increases) to protect domestic industry from external competition. Moreover, once protection is granted, it is not easy to remove it.34

\textbf{Exchange Rate Variability and Trade Protection}

\textit{a) Description of the Problem}

The swings of real exchange rates generated by uncoordinated macroeconomic policies have an indirect impact on trade volumes through their stimulus on lobbying activities for protection. For a given level of protection, prolonged real exchange movements may increase import penetration ratios. According to the literature on the political economy of trade policy35, changes in import penetration ratios will increase the demand for protectionist measures in order to decrease the adjustment costs of the loss of competitiveness.36 Once protection is given, it is not easy to reduce it even if there is a reversal in the real exchange rate.

The approach adopted to explain the existence of trade barriers between Brazil and Argentina is that explanatory variables of protection are determined by a bargain between sectorial lobbies (demand side) and the politicians (supply side). In this

34 See Trefler (1993).
35 A good example of the effects of changes in import penetration in trade policy can be found in Lael and Verdier (1994). A review on political economy of trade policy can be found on Rodrik (1995);
36 Trefler (1993) is a good example of empirical study that presents evidence that an increase in import penetration ratio results in greater protection.
approach lobbies are able to take action to obtain protection from the politicians that supply protection trying to maximize their self-interest objectives.37 For instance, although politicians may care about the efficiency in the economy38, knowing that protection decreases the aggregate welfare of the economy, they also want to be re-elected39 or elected40 and, therefore, need the money of the lobbies to spend in their campaigns.

This approach was chosen since the literature considers it to be the most useful41 and because there exists evidence that lobbies were important players in Argentina42 when the Brazilian currency crisis of 1999 took place. For instance, the association of rice and footwear products producers (lobbies) negotiated voluntary export restrictions between Brazil and Argentina after pressing their governments for protection.43

We test whether increases in import penetration ratio are significant and have the predicted positive sign in explaining protectionist measures affecting trade between Brazil and Argentina. If they are significant and have the predicted sign, we can conclude that coordination of macroeconomic policies is important since this reduce real exchange

37 There are other possible choices. For instance, we could have used the median voter approach or the political support function approach. Both approaches use the fact that the objective function maximized by the policymaker shows some preference for certain distributional outcomes (Rodrik, 1995, pgs. 1464-1465). An example of empirical work using ideas contained on these approaches is Esfahani and Leaphart (2001).

38 In this scenario we need constant returns to scale and perfect competition so that strategic trade policy is excluded as an option to increase welfare. Also note that since we are analyzing two countries that are trying to implement in full a free trade area, we will not study any gain in protection regarding changes in the terms of trade. This point would be important when studying the formation of Mercosur’s common external tariff. A good empirical study about the common external tariff of Mercosur is Olarreaga et alii (1999). See also Olarreaga and Soloaga (1998) and Flôres et alii (2000).

39 See Grossman and Helpman (1994) as an example.

40 See Magee, Brock and Young (1989) as an example.

41 See Esfahani and Leaphart (2001, pg. 2) and Maggi and Goldberg (1999).

42 See Inter-American Development Bank (2000), pgs. 36-49.

43 One of the forms of pressure included using provincial (or state) courts to get special protection against imports. Obviously when the association of producers get some type of trade protection in a provincial (or state) court, the governments start to incentive a negotiation between the producers in order to avoid a
rate misalignments and, as a consequence, reduces increases in protection resulting from changes in the import penetration ratios.

We use a trade barrier equation44 to test if variations in the import penetration ratio are important in explaining higher levels of protection and have the positive predicted sign. The data used in this equation applies to 1995 Argentinian and Brazilian primary and manufacturing sectors found in the GTAP (Global Trade Analysis Project) database.45 Data for 1992, obtained from the GTAP database, was used to elaborate the variation of import penetration variable for each sector. Part of the political economy variables data is the same used by Olarreaga and Soloaga (1998).46

The trade barrier equation explains bilateral (Brazil and Argentina) sectorial import tax47 through some variables proposed in the literature that represent costs and benefits of lobbying for protection, and also variables important to the supply of trade protection according to the political economy of trade policy. Therefore, we examine if at a specific point in time variations in import penetration ratios are important on average to explain higher levels of protection between Brazil and Argentina. We can write our equation as follows:

\[
T_{ki} = \beta_0 + \beta_1 M_{ki} + \beta_2 \Delta M_{ki} + \beta_3 IS_{ki} + \beta_4 C_{ki} + \beta_5 U_{ki} + \beta_6 IT_{ki} + \alpha_i + \varepsilon_{ki} \quad \text{for } i = \text{AR, BR} \quad (1)
\]

44 As examples the reader can see Trefler (1993), Olarreaga and Soloaga (1998) and Esfahani and Leaphart (2001).

45 See Hertel (1997) for details on the GTAP database.

46 The variables are the concentration, union and intraindustry trade indexes.

47 Import taxes mean net import tariffs, ie, we are taking into consideration not only import tariffs but also import subsidies. A positive point of this measure of protection is that we may have negative values, since import subsidies may be larger than import tariffs. Therefore, we do not need to worry about bias in our econometric estimative originated by censored data. For information on the import tariff data see Hertel (1997), pgs. 87-104.
where T_k is bilateral (Brazil-Argentina) import tax in sector k; M_k is bilateral import penetration ratio in sector k; ΔM_k is variation (between 1995 and 1992) of bilateral import penetration ratio in sector k; IS_k is the input sale index of sector k; C_k is the industrial concentration index for seller firms in sector k; U_k is the labor unionization index of sector k; IT_k is the bilateral intra-industry trade index of sector k. The disturbance ε_{ki} is considered to be normally distributed.

b) Description of the Data and Estimation Procedure

The GTAP database for 1992 presents 37 sectors in the 1992 version and 50 sectors in its version for 1995. Therefore, we aggregated the data for the primary and secondary sectors from the 1995 database to the correspondent sectors contained in the 1992 database.\footnote{The total number of primary and secondary sectors in the 1995 version is 42 and 31 in the 1992 version.} Sectorial output was used as weight when one sector from the 1992 version corresponded to more than one sector in the 1995 version. Data for sectorial concentration, unionization and bilateral intra-industry was aggregated from secondary sectors of ISIC level 3 to the secondary sectors of GTAP database for 1995 and then aggregated to the correspondent sectors of GTAP database for 1992.\footnote{See the GTAP database manual (chapter 8, pgs. 15-17) for the secondary sectors aggregation from ISIC level 3 to GTAP database version 4 (1995). For details on protection data see chapters 4 and 13 of this manual.}

The sectorial bilateral import penetration ratio was calculated as the division of imports by the sum of output and net imports for each sector.\footnote{Same procedure was used in Trefler (1993).} The literature predicts an ambiguous impact of the level of import penetration ratio over sectorial protection. In a
model with trade taxes but without quantitative restrictions on imports and exports, and where obtaining public funds does not distort consumption allocation, the standard prediction is that the greater are imports relative to the domestic consumption, the greater is the loss of welfare from protection. However, if the model includes quantitative restrictions (like quotas or VERs) on imports and exports and where a receipt of public funds distort consumption allocation, the standard prediction does not hold in many cases.

The industrial concentration index is calculated as the number of firms in one sector divided by the total number of firms in the economy. Since more concentrated firms have lower opportunity costs of lobbying by the reduction of the free rider problem in the coordination of the lobby, we expect that the concentration index coefficient be negative.

The input sale index is calculated as the sectorial sale used as inputs by other sectors scaled by the total sectorial output. We expect that the input sale index has a negative impact on protection since other industry lobbies would try to counter-lobby any increase in protection of the sector from which they buy many intermediate goods. In the case of the union and intra-industry trade variables, we calculated in the same way and used the same data as in Olarreaga and Soloaga (1998). In both cases we expect the coefficient for both variables to have a positive effect on sectorial protection, which is the consensus in most of the literature on the political economy of trade.

\[51\] In the sense found in Maggi and Rodriguez-Clare (2000).
\[52\] See Grossman and Helpman (1994), pg. 842.
\[53\] This point can be found in Maggi and Rodriguez-Clare (2000).
\[54\] See Rodrik (1987).
Equation (1) constitutes a panel model since we have two countries and individual effects for each sector. The estimation procedure adopted should take into consideration the nature of the individual effects, ie, if they are randomly generated or are fixed but unknown constants differing among sectors. Besides, both the theoretical and empirical literature\(^{56}\) indicate that the import penetration ratio is endogenous in equation (1). We need to test if correlation between the regressors and individual effects and an endogeneity problem in the level of import penetration variable exist in the model described by equation (1). The Hausman (1978)\(^{57}\) test is an adequate tool to handle this task.

In this paper the null hypothesis would be the inexistence of endogeneity problems caused by the correlation of individual effects with the regressors and the presence of orthogonality of the import penetration ratio with respect to the remaining disturbance. The alternative hypothesis that will be used present correlation of the regressors with respect to individual effects and correlation of the import penetration ratio with respect to the equation disturbance.

Using this null and alternative hypothesis, the efficient and consistent estimator under the null is the random effect estimator\(^{58}\) and the consistent estimator under both hypothesis is a fixed effect model using instrumental variables\(^{59}\) (FEIV) to deal with the endogeneity problem of the import penetration ratio. One also notes that a fixed effect

\(^{56}\) Using a system of equations to capture the impact of trade barriers on U.S. imports, taking into account that protectionist measures are endogenous, ie, trade protection is partially explained by imports and vice-versa, Trefler (1993) estimated that the impact of nontariff barriers have a ten times larger impact than previous estimatives that did not considered protection endogeneity.

\(^{57}\) See Hausman (1978, pgs. 1252-1253). The basic idea of the Hausman test is to compare two estimators, which under the null hypothesis are both consistent, one of them, is the fully efficient estimator, and under the alternative hypothesis just the less efficient estimator under the null hypothesis remains consistent.

model automatically deals with the endogeneity problem between the regressors and individual effects.

The question of which instruments use to control the endogeneity of the import penetration ratio and calculate equation (1) by fixed effects, still remains. Most analysts usually consider the sectorial factor shares as correlated with the import penetration ratio, but not with the trade protection. The argument is that factor shares are correlated with the import penetration ratio since they indicate how well an industry matches with the country’s comparative advantage and, therefore, how well it can compete against imports.

The GTAP database provides data about primary factor (labor, capital, land and natural resources) earnings by sector. Following the usual procedure, we estimated factor shares as the total earning of the factor in a sector divided by total output of the sector. Then, in order to eliminate the endogeneity problem of the import penetration ratio, we ran by OLS, using pooled data for Brazil and Argentina, the following equations:

\[M_k = \alpha_1 NR_k + \alpha_2 T_k + \alpha_3 L_k + \alpha_4 K_k + \mu \]

where \(L_k \) is labor share in sector \(k \); \(K_k \) is capital share in sector \(k \); \(NR_k \) is natural resource in sector \(k \); \(T_k \) is land share in sector \(k \). It is also assumed that disturbances in both equations are normally distributed.

59 It should be highlighted that IV estimators provide consistent estimators that in general are biased. See Davidson and MacKinnon (1993, pg. 217).
60 Using a large number of instruments may provide asymptotic more efficient estimators in large samples. However, in finite samples the more instruments used the more biased is the IV estimator. See Johnston and Dinardo (1997, pg. 157).
61 See Maggi and Goldberg (1999, pg. 1143) and Esfahani and Leaphart (2001, pgs. 9 and 10).
63 Another option would be to estimate a system of equations like equation (1) and equation (2) but adding trade barrier proxy (in our case import taxes) in equation (2). See Trefler (1993). However, we are not interested in estimating the impact of protection on the import penetration ratio. Then, we chose this easier method.
Estimating equation (2), we obtain an estimate of the import penetration ratio without endogeneity problems that can be used to estimate equation (1).\(^64\) Equation (2) can be called a “first stage”\(^65\) to estimate equation (1) without the possible endogeneity problem of the import penetration ratio. Using the estimated sectorial import penetration ratio from equation (2), we apply a fixed-effect (FEIV) model to estimate the Hausman test statistic described above. This test statistic achieved a value of 70.56 and, therefore, we reject the null hypothesis\(^66\), ie, the FEIV model is the one that should be used. The estimates of equation (1) using the FEIV model can be seen in table 4.

<table>
<thead>
<tr>
<th>Variables</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Import penetration (Estimated)</td>
<td>-0.12</td>
<td>5.02*</td>
<td>4.68*</td>
<td>4.68*</td>
</tr>
<tr>
<td></td>
<td>(1.74)</td>
<td>(1.97)</td>
<td>(2.04)</td>
<td>(2.16)</td>
</tr>
<tr>
<td>Variation in Import Penetration</td>
<td>1.77*</td>
<td>2.7*</td>
<td>2.75*</td>
<td>2.74*</td>
</tr>
<tr>
<td></td>
<td>(0.85)</td>
<td>(1.26)</td>
<td>(1.28)</td>
<td>(1.37)</td>
</tr>
<tr>
<td>Input sales</td>
<td>0.04</td>
<td>-0.26***</td>
<td>-0.27***</td>
<td>-0.27***</td>
</tr>
<tr>
<td></td>
<td>(0.09)</td>
<td>(0.08)</td>
<td>(0.08)</td>
<td>(0.09)</td>
</tr>
<tr>
<td>Union</td>
<td>-2.78</td>
<td>-2.62***</td>
<td>-2.65*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.66)</td>
<td>(0.69)</td>
<td>(1.02)</td>
<td></td>
</tr>
<tr>
<td>Intraindustry</td>
<td></td>
<td></td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(1.28)</td>
<td></td>
</tr>
<tr>
<td>Concentration</td>
<td>-0.4</td>
<td>-0.37</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.46)</td>
<td>(0.77)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of Observations</td>
<td>62</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>F-Test</td>
<td>1.52</td>
<td>6.49***</td>
<td>5.2*</td>
<td>3.90*</td>
</tr>
</tbody>
</table>

* Significant at 95 percent
*** Significant at 99 percent

Note: Standard errors are in parenthesis and F-test designated to test if all variables are different than zero

Table 4 shows the estimation of equation (1) with different sets of explanatory variables. One observes that whatever the set of variables, the coefficient for the variation

\(^{64}\) By the description of our method we are using a particular method by which IV estimates can be computed. See Davidson and MacKinnon (1993, pg. 220).

\(^{65}\) In analogy to the 2SLS estimator.

\(^{66}\) Comparing with the critical value provided by a Chi-square distribution with six degrees of freedom.
of import penetration variable is positive and significant. It clearly indicates that the large swings in real exchange rate produced by divergent macroeconomic policies of Brazil and Argentina cause the appearance or intensification of protective measures through the lobbying of sectors that lose market-share to imports.67

One also notes that the input sales variable is significant and has the expected sign. The concentration index variable also has the expected effect on sectorial protection, but is not significant. In the case of the import penetration variable, its positive value has been found in other studies68 and, as we have already said, theory’s prediction of the coefficient of this variable is ambiguous.

However, the union index variable is significant, but do not have the expected effect on protection. This result might be due to the lack of better data to elaborate the index. For instance, in studies of protection in the United States, much use is made of campaign contributions to elaborate the unionization index.69 Unfortunately, this kind of data is not available for Brazil and Argentina.

3.3) FDI Flows to Mercosur: Some Indications of the Relation Between lack of Macro Coordination and Confrontation for the FDI country distribution.

This subsection aims to describe another possible consequence of the lack of macro coordination between Brazil and Argentina: conflicts over the distribution of Foreign Direct Investment (FDI). This is done by first showing the magnitude of the FDI

67 We ran the same regressions using a country dummy variable and dummy variables for the automotive and sugar sectors. Since none of these dummies were significant, we decided not to report the coefficients of these regressions.

68 For instance, see Olarreaga and Soloaga (1998, pg. 305 and 314). One reason for the unexpected sign of the coefficient for import penetration could be the use of this variable and the union index in an additive form in the set of explanatory variables. It might be better use an interactive form between these variables. See Maggi and Goldberg (1999), pg. 3.
flows to Latin American economies (focusing on Mercosur), then analyzing what caused these flows to Mercosur and, finally, presenting some recent facts that indicate strains between the main economies of Mercosur with respect to FDI distribution.

a) Magnitude of FDI Flows to Mercosur and Its Causes

During the nineties there has been a major increase in FDI flows to Latin America and in particular to the main economies of Mercosur, Brazil and Argentina. The significant increase in FDI flows that are shown in table 3 is a consequence of the liberalization policies\(^ {70}\) and the attainment of economic stability, which the region experienced at that time. It is also a consequence of the deepening of the globalization process in the world.\(^ {71}\)

<table>
<thead>
<tr>
<th>Table 5 - Latin America and Mercosur: Net Inflows of Foreign Direct Investment, 1990-2000</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Millions of Dollars)</td>
</tr>
<tr>
<td>Latin American Integration Association (LAIA)</td>
</tr>
<tr>
<td>Brazil</td>
</tr>
<tr>
<td>Argentina</td>
</tr>
<tr>
<td>Mexico</td>
</tr>
<tr>
<td>14249</td>
</tr>
<tr>
<td>1703</td>
</tr>
<tr>
<td>2982</td>
</tr>
<tr>
<td>5430</td>
</tr>
<tr>
<td>Source: Economic Commission for Latin America and Caribbean (2000), pg. 3.</td>
</tr>
<tr>
<td>(1) Annual Average</td>
</tr>
<tr>
<td>(2) Estimatives</td>
</tr>
</tbody>
</table>

The table above highlights the considerable increase of FDI net inflows to Latin America. In 1999 net inflows were 500 percent higher than the average of the period

\(^ {69}\) See Maggi and Goldberg (1999) and Trefler (1993).
\(^ {70}\) By liberalization process we mean the decrease of restrictions to foreign capital in many sectors and the implementation of privatization processes with minor restrictions to the participation of foreign capital. It also included guarantees to foreign capital against opportunistic behavior. See Urbiztondo (1998), pg. 465-466.
1990-1994, although a decrease in these values for 2000 was estimated. The decrease from 1999 to 2000 was caused by the concentration of some important acquisitions of domestic firms by multinationals firms in 1999. An example was the purchase of privately held shares in Argentinean Yacimientos Petrolíferos Fiscales (YPF) by Spain’s Repsol in an operation amounting more than US$ 13 billions. In the case of Brazil, the value of net inflows in 1999 was more than 1000 percent higher than the average of the period 1990-1994, which means an increase proportionately higher than the average of the Latin American countries.72

Not only is the size of the increase of FDI net inflows similar in the two main economies of Mercosur, but they also represent similarities in the strategies of multinational firms investing in these countries and in the economic activities in which these investments take place. The services sector was the most important vehicle behind the increase of net FDI inflows.73 Tables 6 and 7 show the participation of the main economic activities in FDI inflows for Brazil and Argentina in the nineties.

| Table 6 - Argentina: FDI Inflows by Main Economic Activity (%) |
|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|
| Primary | 27.39 | 8.54 | 13.81 | 10.19 | 24.6 | 2.56 | 11.92 |
| Manufacturing | 14.72 | 31.07 | 51.74 | 37.92 | 40.43 | 35.46 | 13.89 |
| Services | 57.89 | 60.38 | 34.45 | 51.89 | 34.98 | 61.98 | 74.19 |
| Source: INDEC |

| Table 7 - Brazil: FDI Inflows by Main Economic Activity (%) |
|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|
| Primary | 6.6 | 6.7 | 5.9 | 1.44 | 2.98 | 0.61 | 1.53 |
| Manufacturing | 69.15 | 72.75 | 72.53 | 22.7 | 13.3 | 11.89 | 25.4 |
| Services | 24.28 | 20.55 | 21.61 | 75.86 | 83.72 | 87.5 | 73.06 |
| Source: Central Bank of Brazil and IMF |

71 See Mortimore (2000), pg. 1613.
72 See Economic Commission for Latin America and the Caribbean (2000), pg. 5.
73 Ibid, pg. 5.
The tables above show the dramatic increase in the share of FDI allocated to services sector (mainly in the Brazilian case). This substantial share of FDI inflows in service activities, which are mostly non-tradables, raises questions of possible future problems in the balance of payments of both countries.74 For instance, profits remittances increased 18 percent from 1997 to 1998 in the Brazilian case.75

The possibility of balance of payments problems related to the concentration of FDI inflows in non-tradable industries is reinforced when we notice that in the case of Brazil and Argentina the strategies that multinational corporations have been adopting is to try to guarantee market access at the regional (Mercosur) or at the domestic level.76 Thus even investments in tradable activities in Brazil and Argentina (like those in manufacturing) are not usually aimed at generating exports to OECD countries, as was the case of recent FDI flows to Mexico and some countries in the Caribbean.77

From 1990 to 1993 the main source of FDI net inflows to Argentina was the privatization of public services (like telecommunications, energy and transports). During this period, 54 percent of net inflows of FDI were directed to the purchase of public service companies.78 From 1994 to 1998, the purchase of private companies by multinational firms was the main channel of FDI inflows to Argentina, reaching 41 percent from 1995 to 1997.79 In the case of Brazil, the outstanding increase of FDI

\begin{flushright}
74 Bonelli (1999, pg. 3) and Economic Commission for Latin America and Caribbean (2000, pg.5). International Monetary Fund (2001, pgs. 185 and 186) presents an optimistic view of the relation between concentration of FDI in services sector and the balance of payments problem in the case of Brazil.
75 UNCTAD (1999), pg. xxii.
76 Economic Commission for Latin America and Caribbean (pg. 37) and Mortimore (2000, pg. 1615). According to UNCTAD (2000, pg. 115), one half of investors that participated in a pool about the importance of Mercosur answered that in the absence of this regional agreement they would invest solely in Brazil. It’s worth notice that the Brazilian economy accounts for 70 percent of the Mercosur.
77 See Mortimore (2000), pg. 1616-1617.
78 See Economic Commission for Latin America and the Caribbean (1998), pg. 85.
79 Ibid, pg. 85.
\end{flushright}
inflows from 1994 to 2000 was linked to the privatization of public services and acquisition operations led by multinationals.

From 1996 to 2000 the net inflows of FDI channeled to privatization in Brazil ranged from 21 percent to 28 percent.\(^{80}\) It is also notable that the value of the cross border mergers and acquisitions reached 70% and 60% of the amount of FDI in Argentina and Brazil respectively from 1991 to 1999. It clearly indicates that most FDI flows are not channeled to new investments in the larger economies of the south cone.\(^{81}\)

b) Some Leads of Confrontation for FDI allocation in Mercosur

The privatization of public services at first attracted FDI flows through the award of privileged access to domestic market and, at least until now, was not an issue creating confrontation between Brazil and Argentina because changes in the real effective rates would not affect the allocation of this type of investment.\(^{82}\) However, the reinvestments in these sectors and the foreseen modernization and expansion of the public utilities system in both countries may generate confrontation between these economies since the lack of macroeconomic coordination might shift demand of equipments to the modernization of these sectors from one country to the other.

However, there are indications that the FDI inflows directed to manufacturing have been an issue causing confrontation between Brazil and Argentina. Activities in manufacturing are tradable, and, therefore, the allocation of investments in these activities may be affected by the swings in the bilateral real exchange rate. The

\(^{80}\) Data provided by Sobeet.
\(^{81}\) See Chudnovsky and Lopez (2001), pg. 9.
\(^{82}\) According to UNCTAD (2000, pg. 11 and pgs.20-21), there is no indication that FDI flow is scarce and that multinationals face hard choices among host countries with similar investment opportunities.
The automobile sector is the most important in the trade and investment relations between Argentina and Brazil. As it represented one third of the trade between the two countries, a confrontation could be prejudicial to the continuance of Mercosur.

In the years after the devaluation of the real in January 1999 no new investment plans were made in Argentina’s automobile sector. In July 2001 the president of Argentina’s Association of Automobile Producers (Adefa) stated, “…if the Mercosur does not provide a market for at least 2.5 million cars per year, we shall not need so many manufacturing plants”.83 At the time of the interview the sales estimate for the region was less than 2 million cars. Given the weak market, Chrysler closed its plant in Córdoba, GM closed one of its Argentinean plants and concentrated its remaining production in Rosário. It was reported that Argentinean executives feared that the parent offices of multinationals would continue to transfer operations to Brazil, where production costs were 25 to 30% lower than in Argentina.84

As a number of components producers were closing down in Argentina and transferring their operations to Brazil, especially after the devaluation of the real, the Argentinean government began to make demands on its main Mercosur partner. It demanded that the assembly plants located in Argentina increased their purchases of components produced in Argentina (30 to 40%) and that component producers located in Brazil set up production facilities in Argentina.85

The facts presented above indicate that the lack of coordination of macroeconomic policies, especially exchange rate policies, has changed relative prices

84 Ibid.
and the costs of productive enterprises. This was an important source of trade conflicts and seems to be an important reason for the competition for new foreign investments in the region. Thus the greater coordination and synchronization of economic policies is a fundamental pre-requisite for the future expansion of economic integration.

4-Conclusions and Policy Implications.

In this paper we have shown that the lack of macroeconomic and exchange rate coordination policies in Mercosur have been an impediment to bringing the full potential trade and investment benefits of a common market to the region. It has caused substantial amounts of price and exchange rate fluctuations. In the second section of this work we showed data regarding trade integration among the major economies in Mercosul and also described how different their macroeconomic policies are since the creation of Mercosur through the Assuncion Treaty.

In section three we analyzed the impacts on trade of the lack of macroeconomic coordination between Brazil and Argentina. The divergent macroeconomic policies of these economies have had negative effects on bilateral trade due to the risk averseness of exporters and importers, and due to the protectionist forces they have brought forth. Using econometric tools this work showed that an increase of 10 percent in the bilateral effective exchange rate volatility, which was the measure of risk used in this paper, between Brazil and Argentina decreases in one percent bilateral exports for these economies.

85 See “Setor representa um terço do comércio entre Brasil e Argentina”, in O Estado de São Paulo, 17 of august 2000.
In the same section we also analyzed the impact of the lack of macroeconomic coordination on trade through the existence of protectionist forces brought forth by lobbies. Dealing with the endogeneity problem between trade barriers and the import penetration ratio, we use a fixed-effects panel data regression to show that the variation of the import penetration ratio has a positive and significant effect on average to the existence of higher bilateral trade barriers for Brazil and Argentina. Thus, it shows that in the case of Mercosur the large swings in bilateral effective exchange rate indirectly cause the creation of trade barriers within the trade block.

In addition to its effect on trade, the lack of policy coordination has also been causing increasing confrontations (mainly between Argentina and Brazil) with respect to the allocation of FDI. In the last subsection of section three we discussed the recent increase of FDI flows to Mercosur’s economies and analyses existing and possible future sources of competition between Brazil and Argentina relating to FDI allocation. Using the example of the automotive sector, this section described strains between Brazil and Argentina related to the allocation of automotive firms’ plants. The overvaluation of Argentina’s real exchange rate and the devaluation of the Real in 1999, has caused both a switch in components purchases to Brazil and also a migration of FDI to the latter due to lower costs of production. This has increased tensions between the two countries.

It is thus clear that without policy coordination and a gradual unification of exchange rate policies, Mercosur’s chances of success will be substantially diminished. In fact, our findings would sustain Barry Eichengreen’s conclusion that “If...there develops a readiness to transform Mercosur into a more far-reaching integration initiative, involving the creation of a true single, integrated South American market, then
exchange rate swings will become more politically disruptive, and monetary unification becomes not only feasible but essential.86

Although the complete implementation of a monetary union between Brazil and Argentina seems at least a decade away87, and even taking into account that the ex-ante qualifications of the two countries to form an optimal currency area are debatable88, the idea to create a common currency for the two main countries of South America is gaining popularity in the agenda of politicians.

If the creation of a common currency for Brazil and Argentina is essential to the deepening of the integration process in Mercosur in the long run, macroeconomic coordination89 in the short-run is important to achieve this long-run objective. As shown above, the differences in the macroeconomic policies of Brazil and Argentina result in trade and investment strains incompatible with the formation of a true common market in South America.

As well described in the literature a monetary union has advantages and disadvantages. Among the former are: 1) increased efficiency resulting from an expanded market; 2) the elimination of the uncertainties associated with exchange rate volatility; and 3) the creation of a supra-national central bank with a clear mandate to keep inflation low and thus eliminate the risks of investing in the region and by keeping interest rates low, increase the investment levels within the region. The main cost of

86 Eichengreen (1998), p. 33.
87 Giambiagi (2001).
88 Giambiagi (1998), pp. 17.
89 Giambiagi (2001), pp. 150.
monetary unification would be a reduction of sovereignty over monetary and exchange rate policies.90

The increase of macroeconomic coordination between Brazil and Argentina in the short-run affects the costs and benefits of a monetary union involving these countries. Since economic policy coordination could promote trade between these countries, it would induce higher efficiency gains with the monetary union since these two economies would be more integrated. It is also worth noticing that economies with higher and similar levels of fiscal and monetary performance would attract higher levels of investment due to the reduction of investment risks.

Thus, macroeconomic coordination between Brazil and Argentina is a key not only in the strengthening of the economic relations between these two countries, but also in strengthening Mercosur. If not by its short-run effects, policy coordination between the two main economies in Mercosur would help to build the road to economic prosperity in the long run.

90 Giambiagi (2001), pp. 123-124.
Bibliography

UNCTAD (2000). “FDI Determinants and TNC Strategies: The Case of Brazil”.